Ir al contenido

Documat


Supercyclicity of weighted composition operators on spaces of continuous functions

  • Autores: María José Beltrán Meneu, Enrique Jorda Mora Árbol académico, Marina Murillo Arcila Árbol académico
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 71, Fasc. 3, 2020, págs. 493-509
  • Idioma: inglés
  • DOI: 10.1007/s13348-019-00274-1
  • Texto completo no disponible (Saber más ...)
  • Referencias bibliográficas
    • Albanese, A., Jornet, D.: A note on supercyclic operators in locally convex spaces. Mediterr. J. Math. 16, 107 (2019). ...
    • Aleman, A., Suciu, L.: On ergodic operator means in Banach spaces. Integr. Equ. Oper. Theory 85(2), 259–287 (2016)
    • Ansari, S.: Hypercyclic and cyclic vectors. J. Funct. Anal. 128(2), 374–383 (1995)
    • Ansari, S.I., Bourdon, P.S.: Some properties of cyclic operators. Acta Sci. Math. 63, 195–207 (1997)
    • Bayart, F., Matheron, É.: Hyponormal operators, weighted shifts and weak forms of supercyclicity. Proc. Edinb. Math. Soc. 49, 1–15 (2006)
    • Bayart, F., Matheron, É.: Dynamics of Linear Operators. Cambridge University Press, Cambridge (2009)
    • Bermudo, S., Montes-Rodríguez, A., Shkarin, S.: Orbits of operators commuting with the Volterra operator. J. Math. Pures Appl. 89(2), 145–173...
    • Bernal-Rodríguez, L., Montes-Rodríguez, A.: Universal functions for composition operators. Complex Var. Theory Appl. 27(1), 47–56 (1995)
    • Bès, J.: Dynamics of weighted composition operators. Complex Anal. Oper. Theory 8, 159–176 (2014)
    • Bonet, J., Peris, A.: Hypercyclic operators on non-normable Fréchet spaces. J. Funct. Anal. 159, 587–595 (1998)
    • Bourdon, P.S., Shapiro, J.S.: Cyclic Phenomena for Composition Operators, Mem. Am. Math. Soc. 125 (1997), no. 596, Providence, Rhode Island
    • Chan, K.C., Sanders, R.: A weakly hypercyclic operator that is not norm hypercyclic. J. Oper. Theory 52, 39–59 (2004)
    • Duggal, B.P.: Weak supercyclicity: dynamics of paranormal operators. Rend. Circ. Mat. Palermo 65(2), 297–306 (2016)
    • Fernández, C., Galbis, A., Jordá, E.: Dynamics and spectra of composition operators on the Schwartz space. J. Funct. Anal. 274(12), 3503–3530...
    • Grosse-Erdmann, K.G., Mortini, R.: Universal functions for composition operators with non-automorphic symbol. J. Anal. Math. 107, 355–376...
    • Cowen, C., MacCluer, B.: Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics. CRC Press, Boca Raton (1995)
    • Garling, D.J.H.: A Course in Mathematical Analysis: Volume III, Complex analysis, Measure and Integration. Cambridge University Press, New...
    • Garrido, M.I., Jaramillo, J.A.: Variations on the Banach–Stone theorem. In: IV Course on Banach spaces and Operators (Laredo, 2001), Extracta...
    • Gadgil, S.: Dynamics on the circle-interval dynamics and rotation number. Reson. J. Sci. Educ. 8(11), 25–36 (2003)
    • Grosse-Erdmann, K.G., Peris, A.: Linear Chaos. Springer, Berlin (2011)
    • Grosse-Erdmann, K.G., Mortini, R.: Universal functions for composition operators with non-automorphic symbol. J. Anal. Math. 107, 355–376...
    • Gunatillake, G.: Invertible weighted composition operators. J. Funct. Anal. 261, 831–860 (2011)
    • Herrero, D.A.: Limits of hypercyclic and supercyclic operators. J. Funct. Anal. 99(1), 179–190 (1991)
    • Hilden, H.M., Wallen, L.J.: Some cyclic and non-cyclic vectors of certain operators. Indiana Univ. Math. J. 23, 557–565 (1974)
    • Kalmes, T.: Dynamics of weighted composition operators on function spaces defined by local properties. Studia Math. 249(3), 259–301 (2019)
    • Kamali, Z., Hedayatian, K., Khani Robati, B.: Non-weakly supercyclic weighted composition operators. Abstr. Appl. Anal. Art. (2010) ID 143808
    • Köthe, G.: Topological Vector Spaces II. Springer, New York (1979)
    • Liang, Y.X., Zhou, Z.H.: Supercyclic tuples of the adjoint weighted composition operators on Hilbert spaces. Bull. Iran. Math. Soc. 41(1),...
    • Milnor, J.: Dynamics in One Complex Variable, 3rd edn. Princeton University Press, Princeton (2006)
    • Montes-Rodríguez, A., Rodríguez-Martínez, A., Shkarin, S.: Cyclic behaviour of Volterra composition operators. Proc. Lond. Math. Soc. 103(3),...
    • Montes-Rodríguez, A., Shkarin, S.: Non-weakly supercyclic operators. J. Oper. Theory 58(1), 39–62 (2007)
    • Moradi, A., Khani Robati, B., Hedayatian, K.: Non-weakly supercyclic classes of weighted composition operators on Banach spaces of analytic...
    • Peris, A.: Multi-hypercyclic operators are hypercyclic. Math. Z. 236(4), 779–786 (2001)
    • Sanders, R.: Weakly supercyclic operators. J. Math. Anal. Appl. 292, 148–159 (2004)
    • Sanders, R.: An isometric bilateral shift that is weakly supercyclic. Integr. Equ. Oper. Theory 53, 547–552 (2005)
    • Shapiro, J.H.: Composition Operators and Classical Function Theory. Universitext. Tracts in Mathematics. Springer, New York (1993)
    • Shapiro, J.H.: Simple connectivity and linear chaos. Rend. Circ. Mat. Palermo (2) Suppl 56, 27–48 (1998)
    • Shkarin, S.: Non-sequential weak supercyclicity and hypercyclicity. J. Funct. Anal. 242(1), 37–77 (2007)
    • de Welington, M., van Strien, S.: One-Dimensional Dynamics. Springer, Berlin (1993)
    • Yousefi, B., Rezaei, H.: Hypercyclic property of weighted composition operators. Proc. Am. Math. Soc. 135(10), 3263–3271 (2007)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno