Ir al contenido

Documat


Weighted estimates for operator-valued Fourier multipliers

  • Autores: Stephan Fackler, Tuomas P. Hytönen, Nick Lindemulder
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 71, Fasc. 3, 2020, págs. 511-548
  • Idioma: inglés
  • DOI: 10.1007/s13348-019-00275-0
  • Enlaces
  • Referencias bibliográficas
    • Amenta, A., Lorist, E., Veraar, M.: Fourier multipliers in Banach function spaces with UMD concavifications. Trans. Am. Math. Soc. 371(7),...
    • Bourgain, J.: Vector-valued singular integrals and the $$H^1$$-BMO duality. In: Chad, J.A., Woyczynski, W.A. (eds.) Probability Theory and...
    • Chill, R., Fiorenza, A.: Singular integral operators with operator-valued kernels, and extrapolation of maximal regularity into rearrangement...
    • Chill, R., Król, S.: Real interpolation with weighted rearrangement invariant Banach function spaces. J. Evol. Equ. 17(1), 173–195 (2017)
    • Clément, P., de Pagter, B., Sukochev, F.A., Witvliet, H.: Schauder decomposition and multiplier theorems. Studia Math. 138(2), 135–163 (2000)
    • Denk, R., Hieber, M., Prüss, J.: $${\mathscr {R}}$$-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Am....
    • Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations, Volume 194 of Graduate Texts in Mathematics. Springer, New...
    • Girardi, M., Weis, L.: Operator-valued Fourier multiplier theorems on $$L_p(X)$$ and geometry of Banach spaces. J. Funct. Anal. 204(2), 320–354...
    • Haak, B., Kunstmann, P.: Weighted admissibility and wellposedness of linear systems in Banach spaces. SIAM J. Control Optim. 45(6), 2094–2118...
    • Hänninen, T., Hytönen, T.: The $$A_2$$ theorem and the local oscillation decomposition for Banach space valued functions. J. Oper. Theory...
    • Hörmander, L.: Estimates for translation invariant operators in $$L^{p}$$ spaces. Acta Math. 104, 93–140 (1960)
    • Hytönen, T.: Fourier embeddings and Mihlin-type multiplier theorems. Math. Nachr. 274(275), 74–103 (2004)
    • Hytönen, T.: Anisotropic Fourier multipliers and singular integrals for vector-valued functions. Ann. Mat. Pura Appl. (4) 186(3), 455–468...
    • Hytönen, T.: Vector-valued singular integrals, and the border between the one-parameter and the multi-parameter theories. In: CMA/AMSI Research...
    • Hytönen, T.: The sharp weighted bound for general Calderón–Zygmund operators. Ann. Math. (2) 175(3), 1473–1506 (2012)
    • Hytönen, T., Fackler, S.: Off-diagonal sharp two-weight estimates for sparse operators. N. Y. J. Math. 24, 21–42 (2018)
    • Hytönen, T., Li, K.: Weak and strong $$A_p$$-$$A_\infty $$ estimates for square functions and related operators. Proc. Am. Math. Soc. 146(6),...
    • Hytönen, T., van Neerven, J., Veraar, M., Weis, L.: Analysis in Banach Spaces. Vol. I. Martingales and Littlewood–Paley Theory, volume 63...
    • Hytönen, T., van Neerven, J., Veraar, M., Weis, L.: Analysis in Banach Spaces, vol. II, Probabilistic Methods and Operator Theory, volume 67...
    • Kunstmann, P.C., Weis, L.: Maximal $$L_p$$-regularity for parabolic equations, Fourier multiplier theorems and $$H^\infty $$-functional calculus....
    • Kurtz, D.S.: Littlewood–Paley and multiplier theorems on weighted $$L^{p}$$ spaces. Trans. Am. Math. Soc. 259(1), 235–254 (1980)
    • Kurtz, D.S., Wheeden, R.L.: Results on weighted norm inequalities for multipliers. Trans. Am. Math. Soc. 255, 343–362 (1979)
    • Kwapień, S.: Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients. Studia Math. 44, 583–595...
    • Lancien, G.: Counterexamples concerning sectorial operators. Arch. Math. (Basel) 71(5), 388–398 (1998)
    • Lerner, A.K.: On pointwise estimates involving sparse operators. N. Y. J. Math. 22, 341–349 (2016)
    • Lerner, A.K.: Quantitative weighted estimates for the Littlewood–Paley square function and Marcinkiewicz multipliers. Math. Res. Lett. 26(2),...
    • Lindemulder, N.: Maximal regularity with weights for parabolic problems with inhomogeneous boundary conditions. J. Evol. Equ. (2019). ...
    • Lorist, E.: On pointwise $$\ell ^r$$-sparse domination in a space of homogeneous type. ArXiv e-prints, (Jul. 2019)
    • Littlewood, J.E., Paley, R.E.A.C.: Theorems on Fourier series and power series. J. Lond. Math. Soc. 6(3), 230–233 (1931)
    • Littlewood, J.E., Paley, R.E.A.C.: Theorems on Fourier series and power series (II). Proc. Lond. Math. Soc. (2) 42(1), 52–89 (1936)
    • Marcinkiewicz, J.: Sur les multiplicateurs des séries de Fourier. Stud. Math. 8, 78–91 (1939)
    • McConnell, T.R.: On Fourier multiplier transformations of Banach-valued functions. Trans. Am. Math. Soc. 285(2), 739–757 (1984)
    • Meyries, M., Veraar, M.: Pointwise multiplication on vector-valued function spaces with power weights. J. Fourier Anal. Appl. 21(1), 95–136...
    • Mihlin, S.G.: On the multipliers of Fourier integrals. Dokl. Akad. Nauk SSSR (N.S.) 109, 701–703 (1956)
    • Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165, 207–226 (1972)
    • Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44. Springer,...
    • Prüss, J., Simonett, G.: Maximal regularity for evolution equations in weighted $$L_p$$-spaces. Arch. Math. (Basel) 82(5), 415–431 (2004)
    • Rubio de Francia, J.L., Ruiz, F.J., Torrea, J.L.: Calderón–Zygmund theory for operator-valued kernels. Adv. Math. 62(1), 7–48 (1986)
    • Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, volume 43 of Princeton Mathematical Series....
    • Štrkalj, Ž., Weis, L.: On operator-valued Fourier multiplier theorems. Trans. Am. Math. Soc. 359(8), 3529–3547 (2007)
    • Weis, L.: Operator-valued Fourier multiplier theorems and maximal $$L_p$$-regularity. Math. Ann. 319(4), 735–758 (2001)
    • Witvliet, H.: Unconditional Schauder decompositions and multiplier theorems. Ph.D. thesis, Delft University of Technology (2000)
    • Zimmermann, F.: On vector-valued Fourier multiplier theorems. Studia Math. 93(3), 201–222 (1989)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno