Ir al contenido

Documat


Hodge level for weighted complete intersections

  • Autores: Victor Przyjalkowski, Constantin Shramov
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 71, Fasc. 3, 2020, págs. 549-574
  • Idioma: inglés
  • DOI: 10.1007/s13348-019-00276-z
  • Texto completo no disponible (Saber más ...)
  • Referencias bibliográficas
    • Batyrev, V.V., Ciocan-Fontanine, I., Kim, B., van Straten, D.: Mirror symmetry and toric degenerations of partial flag manifolds. Acta Math....
    • Batyrev, V., Cox, D.: On the Hodge structure of projective hypersurfaces in toric varieties. Duke Math. J. 75(2), 293–338 (1994)
    • Beilinson, A.: Coherent sheaves on $${\mathbb{P}}^n$$ and problems in linear algebra. Funct. Anal. Appl. 12(3), 214–216 (1978)
    • Carlson, J.A.: Extensions of mixed Hodge structures. Journées de Géometrie Algébrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979,...
    • Cartwright, D., Steger, T.: Enumeration of the 50 fake projective planes. Comptes Rendus Mathematique, Elsevier Masson SAS 348(1), 11–13 (2010)
    • Chen, J.-J., Chen, J., Chen, M.: On quasismooth weighted complete intersections. J. Algebraic Geom. 20(2), 239–262 (2011)
    • Dimca, A.: Singularities and coverings of weighted complete intersections. J. Reine Angew. Math. 366, 184–193 (1986)
    • Dimca, A.: Residues and cohomology of complete intersections. Duke Math. J. 78(1), 89–100 (1995)
    • Dolgachev, I.: Weighted projective varieties. In: “Lecture Notes in Math.”, 956, Springer-Verlag, Berlin (1982), pp. 34–71
    • Elagin, A., Lunts, V.: On full exceptional collections of line bundles on del Pezzo surfaces. Moscow Math. J. 16(4), 691–709 (2016)
    • Ewing, J., Moolgavkar, S.: Euler characteristics of complete intersections. Proc. Am. Math. Soc. 56, 390–391 (1976)
    • Fatighenti, E., Mongardi, G.: A note on a Griffiths-type ring for complete intersections in Grassmannians. arXiv:1801.09586
    • Fujita, T.: On topological characterizations of complex projective spaces and affine linear spaces. Proc. Jpn. Acad. Ser. A Math. Sci. 56(5),...
    • Galkin, S., Katzarkov, L., Mellit, A., Shinder, E.: Minifolds and phantoms. arXiv:1305.4549
    • Gathmann, A.: Absolute and relative Gromov–Witten invariants of very ample hypersurfaces. Duke Math. J. 115(2), 171–203 (2002)
    • Givental, A.: A mirror theorem for toric complete intersections, Topological field theory, primitive forms and related topics (Kyoto, 1996),...
    • Griffiths, P.: On the periods of certain rational integrals I, II. Ann. Math. 90, 460–541 (1969)
    • Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, 52. Springer-Verlag, New York-Heidelberg (1977)
    • Hirzebruch, F., Kodaira, K.: On the complex projective spaces. J. Math. Pures Appl. (9) 36, 201–216 (1957)
    • Iano-Fletcher, A.R.: Working with weighted complete intersections, Explicit birational geometry of three-folds, 101–173, London Math. Soc....
    • Iliev, A., Manivel, L.: Fano manifolds of Calabi–Yau Hodge type. J. Pure Appl. Algebra 219(6), 2225–2244 (2015)
    • Iskovskikh, V.: Fano treefolds I, II, Math USSR, Izv. 11, 485–527, 469–506 (1977–1978)
    • Iskovskikh, V., Prokhorov, Yu.: Fano Varieties, Encyclopaedia of Mathematical Sciences, 47. Springer, Berlin (1999)
    • Kapranov, M.: On the derived categories of coherent sheaves on some homogeneous spaces. Invent. Math. 92(3), 479–508 (1988)
    • Katzarkov, L., Kontsevich, M., Pantev, T.: Bogomolov–Tian–Todorov theorems for Landau–Ginzburg models. J. Diff. Geom. 105(1), 55–117 (2017)
    • Kobayashi, S., Ochiai, T.: Characterizations of complex projective spaces and hyperquadrics. J. Math. Kyoto Univ. 13, 31–47 (1973)
    • Kuleshov, S.A., Orlov, D.O.: Exceptional sheaves on del Pezzo surfaces. Russ. Acad. Sci. Izv. Math. 44(3), 479–513 (1995)
    • Küchle, O.: On Fano four-fold of index 1 and homogeneous vector bundles over Grassmannians. Math. Z. 218(4), 563–575 (1995)
    • Küchle, O.: Some remarks and problems concerning the geography of Fano four-folds of index and Picard number one. Quaestiones Math. 20(1),...
    • Kuznetsov, A.: An exceptional set of vector bundles on the varieties $$V_{22}$$, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 92(3), 41–44 (1996)
    • Kuznetsov, A.: Derived category of a cubic three-fold and the variety $$V_{14}$$. Proc. Steklov Inst. Math. 3(246), 171–194 (2004)
    • Kuznetsov, A.: Hyperplane sections and derived categories. Izv. Math. 70(3), 447–547 (2006)
    • Kuznetsov, A.: Derived categories of quadric fibrations and intersections of quadrics. Adv. Math. 218(5), 1340–1369 (2008)
    • Kuznetsov, A.: Hochschild homology and semiorthogonal decompositions. arXiv:0904.4330
    • Kuznetsov, A.: Derived categories of cubic four-folds, Cohomological and geometric approaches to rationality problems, pp. 219–243, Progr....
    • Kuznetsov, A.: On Küchle varieties with Picard number greater than 1. Izvestiya: Mathematics 79(4), 698–709 (2015)
    • Kuznetsov, A.: Calabi–Yau and fractional Calabi–Yau categories. J. Reine Angew. Math. 753, 239–267 (2019)
    • Kuznetsov, A.: Küchle five-folds of type $$c_5$$. Math. Z. 284(3), 1245–1278 (2016)
    • Kuznetsov, A.: On linear sections of the spinor tenfold, I. Izv. Math. 82(4), 694–751 (2018)
    • Kuznetsov, A.: Embedding derived category of an Enriques surface into derived category of a Fano variety. Izv. Math. 83(3), 534–539 (2019)
    • Mavlyutov, A.: Cohomology of complete intersections in toric varieties. Pacific J. Math. 191(1), 133–144 (1999)
    • Mumford, D: An algebraic surface with $$K$$ ample, $$K^2=9$$, $$p_g=q=0$$, American Journal of Mathematics, The Johns Hopkins...
    • Nagel, J.: The Abel–Jacobi map for complete intersections. Indag. Math. 8(1), 95–113 (1997)
    • Oguiso, K.: On certain rigid fibered Calabi–Yau three-folds. Math. Z. 221(3), 437–448 (1996)
    • Okada, T.: Stable rationality of orbifold Fano three-fold hypersurfaces. J. Algebraic Geom. 28(1), 99–138 (2019)
    • Orlov, D.: Exceptional set of vector bundles on the variety $$V_5$$, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 5, 69–71 (1991)
    • Pizzato, M., Sano, T., Tasin, L.: Effective non-vanishing for Fano weighted complete intersections. Algebra Number Theory 11(10), 2369–2395...
    • Prasad, G., Yeung, S.-K.: Arithmetic fake projective spaces and arithmetic fake Grassmannians. Am. J. Math. 131(2), 379–407 (2009)
    • Przyjalkowski, V.: Quantum cohomology of smooth complete intersections in weighted projective spaces and in singular toric varieties. Sb....
    • Przyjalkowski, V.: Minimal Gromov–Witten rings. Izv. Math. 72(6), 1253–1272 (2008)
    • Przyjalkowski, V.: Hori–Vafa mirror models for complete intersections in weighted projective spaces and weak Landau–Ginzburg models. Cent....
    • Przyjalkowski, V.: Weak Landau–Ginzburg models for smooth Fano three-folds. Izv. Math. 77(4), 772–794 (2013)
    • Przyjalkowski, V.: Calabi–Yau compactifications of toric Landau–Ginzburg models for smooth Fano three-folds. Sb. Math. 208(7), 992–1013 (2017)
    • Przyjalkowski, V.: On Calabi–Yau compactifications of toric Landau–Ginzburg models for Fano complete intersections. Math. Notes 103(1), 111–119...
    • Przyjalkowski, V., Shramov, C.: On weak Landau–Ginzburg models for complete intersections in Grassmannians. Russ. Math. Surv. 69(6), 1129–1131...
    • Przyjalkowski, V., Shramov, C.: On Hodge numbers of complete intersections and Landau–Ginzburg models. Int. Math. Res. Not. 2015(21), 11302–11332...
    • Przyjalkowski, V., Shramov, C.: Laurent phenomenon for Landau–Ginzburg models of complete intersections in Grassmannians. Proc. Steklov Inst....
    • Przyjalkowski, V., Shramov, C.: Bounds for smooth Fano weighted complete intersections. arXiv:1611.09556
    • Przyjalkowski, V., Shramov, C.: Laurent phenomenon for Landau–Ginzburg models of complete intersections in Grassmannians of planes. Bull....
    • Przyjalkowski, V., Shramov, C.: Nef partitions for codimension $$2$$ weighted complete intersections. Ann. Sc. Norm. Super. Pisa, Cl. Sci....
    • Rapoport, M.: Complément à l’article de P. Deligne La conjecture de Weil pour les surfaces $$K3$$. Invent. Math. 15, 227–236 (1972)
    • Stanley, R.: Hilbert functions of graded algebras. Adv. Math. 28, 57–83 (1978)
    • Wilson, P.M.H.: On projective mani-folds with the same rational cohomology as $${\mathbb{P}}^4$$, Conference on algebraic varieties of small...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno