Ir al contenido

Documat


Fixed points and diametral sets for sequentially bounded mappings in orbital ultrametric spaces

  • Babahmed, Mohammed [2] ; El Amrani, Abdelkhalek [3] ; Lazaiz, Samih [1]
    1. [1] Sidi Mohamed Ben Abdellah University

      Sidi Mohamed Ben Abdellah University

      Fes-Medina, Marruecos

    2. [2] University of Moulay Ismail.
    3. [3] University Moulay Ismail.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 39, Nº. 2, 2020, págs. 481-493
  • Idioma: inglés
  • DOI: 10.22199/issn.0717-6279-2020-02-0030
  • Enlaces
  • Resumen
    • In this paper, the T -orbital ultrametric spaces are introduced and a fixed point theorem for sequentially bounded mappings is given. Our main result extends some known theorems for nonexpansive mappings. Examples are given to support our work.

  • Referencias bibliográficas
    • S. Banach, “Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales”, Fundamenta mathematicae, vol. 3,...
    • V. Berinde, Iterative approximation of fixed points, vol. 1912. Berlin: Springer, 2007, doi: 10.1007/978-3-540-72234-2.
    • A. Granas and J. Dugundji, Fixed point theory. New York, NY: Springer, 2010,doi: 10.1007/978-0-387-21593-8.
    • P. Hitzler and A. K. Seda, “The fixed-point theorems of priess-crampe and ribenboim in logic programming”, in Valuation theory and its applications,...
    • B. Hughes, “Trees and ultrametric spaces: a categorical equivalence”, Advances in mathematics, vol. 189, no. 1, pp. 148–191, Dec. 2004, doi:...
    • M. A. Khamsi and W. A. Kirk, An Introduction to metric spaces and fixed point theory. New York, NY: John Wiley and sons, 2001, doi: 10.1002/9781118033074.
    • A. Y. Khrennikov, S. V. Kozyrev, and W. A. Zúñiga-Galindo, Ultrametric pseudodifferential equations and applications, vol. 168. Cambridge:...
    • W. A. Kirk and N. Shahzad, “Some fixed point results in ultrametric spaces”, Topology and its applications, vol. 159, no. 15, pp. 3327–3334,...
    • W. A. Kirk and N. Shahzad, Fixed point theory in distance spaces. Cham: Springer, 2014, doi: 10.1007/978-3-319-10927-5.
    • C. Perez-Garcia and W. H. Schikhof, Locally convex spaces over non- archimedean valued field, vol. 119. Cambridge: Cambridge University Press,...
    • C. Petalas and T. Vidalis, “A fixed point theorem in non-archimedean vector spaces”, Proceedings of the American Mathematical Society, vol....
    • S. Priess-Crampe and P. Ribenboim, “Logic programming and ultrametric spaces”, Rendiconti di matematica e delle sue applicazioni, vol. 19,...
    • S. Priess-Crampe and P. Ribenboim, “Ultrametric spaces and logic programming”, The journal of logic programming, vol. 42, no. 2, pp. 59–70,...
    • S. Priess-Crampe and P. Ribenboim, “Ultrametric dynamics”, Illinois journal of mathematics, vol. 55, no. 1, pp. 287-303, 2011. [On line]....
    • A. C. M. van. Rooij, Non-archimedean functional analysis. New York, NY: M. Dekker, 1978.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno