Ir al contenido

Documat


Prime rings with involution involving left multipliers

  • Boua, Abdelkarim [2] ; Ashraf, Mohammed [1]
    1. [1] Aligarh Muslim University

      Aligarh Muslim University

      India

    2. [2] Sidi Mohammed Ben Abdellah University.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 39, Nº. 2, 2020, págs. 341-359
  • Idioma: inglés
  • DOI: 10.22199/issn.0717-6279-2020-02-0021
  • Enlaces
  • Resumen
    • Let R be a prime ring of characteristic different from 2 with involution ’∗’ of the second kind and n ≥ 1 be a fixed positive integer. In the present paper it is shown that if R admits nonzero left multipliers S and T, then the following conditions are equivalent: (i) R is commutative. (ii) Tn([x, x∗]) 2 Z(R) for all x 2 R; (iii) Tn(x ◦ x∗) 2 Z(R) for all x 2 R; (iv) [S(x), T(x∗)] 2 Z(R) for all x 2 R; (v) [S(x), T(x∗)] - (x ◦ x∗) 2 Z(R) for all x 2 R; (vi) S(x) ◦ T(x∗) 2 Z(R) for all x 2 R; (vii) S(x) ◦ T(x∗) - [x, x∗] 2 Z(R) for all x 2 R. The existence of hypotheses in various theorems have been justified by the examples.

  • Referencias bibliográficas
    • S. Ali and N. A. Dar, “On centralizers of prime rings with involution”, Bulletin of the Iranian Mathematical Society, vol. 41, no. 6, pp....
    • M. Ashraf and N.-U. Rehman, “On commutativity of rings with derivations”, Results in mathematics, vol. 42, no. 1-2, pp. 3–8, Aug. 2002, doi:...
    • M. Ashraf and S. Ali, “On left multipliers and the commutativity of prime rings”, Demonstratio mathematica, vol. 41, no. 4, Oct. 2008, doi:...
    • N. Divinsky, “On commuting automorphisms of rings”, Transactions of the Royal Society of Canada Section III, vol. 49, no. 3, pp. 19-22, 1955.
    • I. R. Hentzel and M. T. El-Sayiad, “Left centralizers on rings that are not semiprime”, Rocky mountain journal of mathematics, vol. 41, no....
    • J. Luh, “A Note on Commuting Automorphisms of Rings”, The american mathematical monthly, vol. 77, no. 1, pp. 61–62, Jan. 1970, doi: 10.1080/00029890.1970.11992420.
    • E. C. Posner, “Derivations in prime rings”, Proceedings of the American Mathematical Society, vol. 8, no. 6, pp. 1093–1100, Jun. 1957, doi:...
    • J. Vukman and I. Kosi-Ulbl, “On centralizers of semiprime rings”, Aequationes mathematicae, vol. 66, no. 3, pp. 277–283, Dec. 2003, doi: 10.1007/s00010-003-2681-y.
    • B. Zalar, “On centralizer of semiprime rings”, Commentationes mathematicae Universitatis Carolinae, vol. 32, no. 4, pp. 609-614, 1991. [On...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno