Ir al contenido

Documat


Modules whose partial endomorphisms have a ?-small kernels

  • Diop, Papa Cheikhou [1] ; Diallo , Abdoul Djibril
    1. [1] Université de Thiès

      Université de Thiès

      Senegal

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 39, Nº. Extra 4, 2020 (Ejemplar dedicado a: Special Issue: Mathematical Computation in Combinatorics and Graph Theory; i), págs. 945-962
  • Idioma: inglés
  • DOI: 10.22199/issn.0717-6279-2020-04-0059
  • Enlaces
  • Resumen
    • Let R be a commutative ring and M a unital R-module. A submodule N is said to be ?-small, if whenever N + L = M with M/L is singular, we have L = M. M is called ?-small monoform if any of its partial endomorphism has ?-small kernel. In this paper, we introduce the concept of ?-small monoform modules as a generalization of monoform modules and give some of their properties, examples and characterizations.

  • Referencias bibliográficas
    • M. S. Abbass, “On fully stable modules”, Ph. D. Thesis, University of Baghdad Iraq, 1990.
    • S. Asgari and A. Haghany, “Generalizations of t-extending modules relative to fully invariant submodules”, Journal of the Korean Mathematical...
    • M. Barry and P.C. Diop, “Some properties related to commutative weakly FGI-rings”, JP Journal of algebra, number theory and application, vol....
    • E. Buyukasik and C. Lomp, “When ?-semiperfect rings are semiperfect”, Turkish journal of mathematics, vol. 34, pp. 317-324, 2010, doi: 10.3906/mat-0810-15
    • A. D. Diallo, P. C. Diop, and M. Barry, “On e-small monoform modules”, JP Journal of algebra, number theory and application, vol. 40, no....
    • M. A. Inaam Hadi and K. H. Marhoon, “Small monoform modules”, Ibn AL- Haitham journal for pure and applied science, vol. 27, no. 2, pp. 229-240,...
    • S. M. Khury, “Nonsingular retractable modules and their endomorphism rings”, Bulletin of the Australian Mathematical Society, vol. 43, no....
    • T. Y. Lam, Lectures on modules and rings, New York, NY: Springer, 1999, doi: 10.1007/978-1-4612-0525-8
    • A. Ç. Özcan and M. Alkan, “Semiperfect modules with respect to a preradica", Communications in algebra, vol. 34, no. 3, pp. 841–856, Feb....
    • P. F. Smith, “Compressible and related modules”, in Algebra groups, rings, modules and homological algebra, P. Goeteres and O.M.G Jenda, Boca...
    • R. Tribak, “Finitely generated ?-supplemented modules are amply ?- supplemented”, Bulletin of the Australian Mathematical Society, vol. 86,...
    • J. M. Zelmanowitz, “Representation of rings with faithful polyform modules”,
    • Communications in algebra, vol. 14, no. 6, pp. 1141-1169, 1986, doi: 10.1080/00927878608823357
    • Y. Q. Zhou, “Generalization of perfect, semiperfect and semiregular rings”, Algebra colloquium, vol. 7, pp. 305-318, Aug. 2000, doi: 10.1007/s10011-000-0305-9

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno