Ir al contenido

Documat


Some resistance distance and distance-based graph invariants and number of spanning trees in the tensor product of P2 and Kn

  • Sardar, Muhammad Shoaib [1] ; Cancan, Murat [2] ; Ediz, Süleyman ; Sajjad, Wasim [1]
    1. [1] Anhui University

      Anhui University

      China

    2. [2] Yüzüncü Yıl University

      Yüzüncü Yıl University

      Turquía

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 39, Nº. Extra 4, 2020 (Ejemplar dedicado a: Special Issue: Mathematical Computation in Combinatorics and Graph Theory; i), págs. 919-932
  • Idioma: inglés
  • DOI: 10.22199/issn.0717-6279-2020-04-0057
  • Enlaces
  • Resumen
    • The resistance distance (Kirchhoff index and multiplicative Kirchhoff index) and distance-based (Wiener index and Gutman index) graph invariants of ?n = P2 ×Kn are considered. Firstly by using the decomposition theorem, we procure the Laplacian and Normalized Laplacian spectrum for graph ?n, respectively. Based on which, we can procured the formulae for the number of spanning trees and some resistance distance and distance-based graph invariants of graph ?n. Also, it is very interesting to see that when n tends to infinity, Kf (?n) is a polynomial and W (?n) is a quadratic polynomial.

  • Referencias bibliográficas
    • E. Bendito, A. Carmona, A. M. Encinas, and J. M. Gesto, “A formula for the Kirchhoff index”, International journal of quantum chemistry, vol....
    • M. Bianchi, A. Cornaro, J. L. Palacios, and A. Torriero, “Bounds for the Kirchhoff index via majorization techniques”, Journal of mathematical...
    • J. A. Bondy and U. S. R. Murty, Graph theory. New York, NY: Springer, 2008.
    • F. Buckley and F. Harary, Distance in graphs. Redwood City, CA: Addison Wesley, 1990.
    • A. Carmona, A. M. Encinas, and M. Mitjana, “Effective resistances for ladder-like chains”, International journal of quantum chemistry, vol....
    • H. Y. Chen and F. J. Zhang, “Resistance distance and the normalized Laplacian spectrum”, Discrete applied mathematics, vol. 155, no. 5, pp....
    • F. R. K. Chung, Spectral graph theory. Providence, RI: AMS, 1997.
    • Z. Cinkir, “Effective resistances and Kirchhoff index of ladder graphs”, Journal of mathematical chemistry, vol. 54, pp. 955-966, 2016. doi:...
    • G. P. Clemente and A. Cornaro, “Computing lower bounds for the Kirchhoff index via majorization techniques”, MATCH communications in mathematical...
    • G. P. Clemente and A. Cornaro, “New bounds for the sum of powers of the normalized Laplacian eigenvalues of graphs”, Ars mathematica contemporanea,...
    • I. Gutman, “Selected properties of the schultz molecular topological index”, Journal of chemical information and computer sciences, vol. 34,...
    • I. Gutman and B. Mohar, “The quasi Wiener and the Kirchoff indices coincide”, Journal of chemical information and computer sciences, vol....
    • C. L. He, S. C. Li, W. J. Luo, and L. Q. Sun, “Calculating the normalized Laplacian spectrum and the number of spanning trees of linear pentagonal...
    • J. Huang and S. C. Li, “On the normalized Laplacian spectrum, degree-Kirchhoff index and spanning trees of graphs”, Bulletin of the Australian...
    • J. Huang, S. C. Li, and X. C. Li, “The normalized Laplacian, degree-Kirchhoff index and spanning trees of the linear polyomino chains”, Applied...
    • D. J. Klein, I. Lukovits, and I. Gutman, “On the definition of the hyperwiener index for cyclecontaining structures”, Journal of chemical...
    • D. J. Klein and M. Randi?, “Resistance distance”, Journal of mathematical chemistry, vol. 12, pp. 81-95, Dec. 1993, doi: 10.1007/BF01164627
    • J. B. Liu, J. Zhao and Z. X. Zhu, “On the number of spanning trees and normalized Laplacian of linear octagonal-quadrilateral networks”, International...
    • S. C. Li, W. Wei, and S. Q. Yu, “On normalized Laplacians, multiplicative degree-Kirchhoff indices, and spanning trees of the linear [n]phenylenes”,...
    • J. L. Palacios, “Closed-form formulas for Kirchhoff index”, International journal of quantum chemistry, vol. 81, no. 2, pp. 135-140, Nov....
    • Y. G. Pan and J. P. Li, “Kirchhoff index, multiplicative degree-Kirchhoff index and spanning trees of the linear crossed hexagonal chains”,...
    • Y. G. Pan and J. P. Li, “Kirchhoff index, multiplicative degree-Kirchhoff index and spanning trees of the linear crossed polyomino chains”,...
    • Y. Peng and S. Li, “On the Kirchhoff index and the number of spanning trees of linear phenylenes”, MATCH communications in mathematical and...
    • H. Wiener, “Structural determination of paraffin boiling points”, Journal of the American Chemical Society, vol. 69, no. 1, pp. 17-20, Jan....
    • W. J. Xiao and I. Gutman, “Resistance distance and Laplacian spectrum”, Theoretical chemistry accounts, vol. 110, pp. 284-289, Sep. 2003,...
    • Y. J. Yang and H. P. Zhang, “Kirchhoff index of linear hexagonal chains”, International journal of quantum chemistry, vol. 108, no. 3, pp....
    • H. P. Zhang, Y. J. Yang, and C. W. Li, “Kirchhoff index of composite graphs”, Discrete applied mathematics, vol. 157, no. 13, pp. 2918-2927,...
    • H. Y. Zhu, D. J. Klein, and I. Lukovits, “Extensions of the Wiener number”, Journal of chemical information and computer sciences, vol. 36,...
    • Z. Z. Zhu and J. B. Liu, “The normalized Laplacian, degree-Kirchhoff index and the spanning tree numbers of generalized phenylenes”, Discrete...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno