Ir al contenido

Documat


Rainbow and strong rainbow connection number for some families of graphs

  • Khan, Yaqoub Ahmed ; Naeem, Muhammad [3] ; Siddiqui, Muhammad Kamran [1] ; Farahani, Mohammad Reza [2]
    1. [1] COMSATS Institute of Information Technology

      COMSATS Institute of Information Technology

      Pakistán

    2. [2] Iran University of Science and Technology

      Iran University of Science and Technology

      Irán

    3. [3] Institute of Southern Punjab.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 39, Nº. Extra 4, 2020 (Ejemplar dedicado a: Special Issue: Mathematical Computation in Combinatorics and Graph Theory; i), págs. 737-747
  • Idioma: inglés
  • DOI: 10.22199/issn.0717-6279-2020-04-0046
  • Enlaces
  • Resumen
    • Let G be a nontrivial connected graph. Then G is called a rainbow connected graph if there exists a coloring c : E(G) ? {1, 2, ..., k}, k ? N, of the edges of G, such that there is a u ? v rainbow path between every two vertices of G, where a path P in G is a rainbow path if no two edges of P are colored the same. The minimum k for which there exists such a k-edge coloring is the rainbow connection number rc(G) of G. If for every pair u, v of distinct vertices, G contains a rainbow u ? v geodesic, then G is called strong rainbow connected. The minimum k for which G is strong rainbow-connected is called the strong rainbow connection number src(G) of G.

      The exact rc and src of the rotationally symmetric graphs are determined.

  • Referencias bibliográficas
    • M. Alaeiyan and M. R. Farahani, “The 1-2-3-edge labeling and vertex colors”, International journal of applied mathematics and machine learning,...
    • F. Asif, Z. Zahid, S. Zafar, M. R. Farahani, and W. Gao, “On topological properties of some convex polytopes by using line operator on their...
    • M. Ba?a, “On magic labellings of convex polytopes”, Annals of discrete mathematics, pp. 13–16, 1992, doi: 10.1016/S0167-5060(08)70599-5
    • S. Chakraborty, E. Fischer, A. Matsliah, and R. Yuster, “Hardness and algorithms for rainbow connectivity”, Leibniz international proceedings...
    • G. Chartrand, G. L. Johns, K. A. McKeon, and P. Zhang, “Rainbow connection in graphs”, Mathematica bohemica, vol. 133, no. 1, pp. 85-98, 2008....
    • D. Estetikasari and S. Sy, “On the rainbow connection for some corona graphs”, Applied mathematical sciences, vol. 7, no. 100, pp. 4975–4980,...
    • M. R. Farahani, “On The 1-2-3-edge weighting and vertex coloring of complete graph”, International journal on computational science &...
    • M. R. Farahani, “A new vertex-coloring edge-weighting of complete graphs”, Journal of applied mathematics & informatics, vol. 32, no....
    • M. R. Farahani and S. H. Hosseini “The 1-2-3-edge labeling and vertex coloring of complete graph Kn with a modified algorithm”, Algebras,...
    • Z. Foruzanfar, F. Asif, Z. Zahid, S. Zafar, and M.R. Farahani, “ABC4 and GA5 indices of line graph of subdivisions of convex polytopes”, International...
    • Z. Foruzanfar, F. Asif, Z. Zahid, S. Zafar, and M. R. Farahani, “ABC4 and GA5 indices of para-line graph of some convex polytope”, Statistics,...
    • M. N. Husin, F. Asif, Z. Zahid, S. Zafar, and M. R. Farahani, “Fourth atom-bond connectivity index and fifth arithmetic-geometric index of...
    • X. Li, Y. Shi, and Y. Sun, “Rainbow connections of graphs: a survey”, Graphs and combinatorics, vol. 29, no. 1, pp. 1–38, Oct. 2012, doi:...
    • R. Sohail, A. Rehman, M. Sh. R. Chowdhury, M. Imran, and M. R. Farahani, “Topological indices of some convex polytopes”, International journal...
    • S. Sy, R. Wijaya, and Surahmat, “Rainbow connection numbers of some graphs”, Applied mathematical sciences, vol. 8, no. 94, pp. 4693–4696,...
    • B. Yang, M. Rashid, S. Ahmad, M. Nadeem, and M. Siddiqui, “Cycle super magic labeling of planar graphs”, International journal of applied...
    • H. Yang, M. A. Rashid, S. Ahmad, M. K. Siddiqui, and M. F. Hanif, “Cycle super magic labeling of pumpkin, octagonal and hexagonal graphs”,...
    • L. Yan, Y. Li, X. Zhang, M. Saqlain, S. Zafar, and M. R. Farahani, “3-total edge product cordial labeling of some new classes of graphs”,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno