Ir al contenido

Documat


Extremal graphs for alpha-index

  • Lenes, Eber [1] ; García, Henry [1] ; Figueroa, Ariel [1] ; Mercado, Fabian [1]
    1. [1] Universidad del Sinú

      Universidad del Sinú

      Colombia

  • Localización: Integración: Temas de matemáticas, ISSN 0120-419X, Vol. 38, Nº. 1, 2020, págs. 15-31
  • Idioma: inglés
  • DOI: 10.18273/revint.v38n1-202002
  • Títulos paralelos:
    • Grafos extremales para alfa-índice
  • Enlaces
  • Resumen
    • español

      Sea N(G) el número de vértices del grafo G. Sean Pl(Bi) los árboles obtenidos del camino Pl y los árboles B1,B2, ...,Bl, identificando el vértice raíz de Bi con el i-th vértice dePl. Sea Vmn = {Pl(Bi) : N(Pl(Bi)) =n; N(Bi) ≥ 2; l ≥ m}. En este artículo determinamos el árbol que tiene el \alpha-índice más grande entre todos los árboles en Vmn.

    • English

      Let N(G) be the number of vertices of the graph G. Let Pl(Bi) be the tree obtained of the path Pl and the trees B1,B2, ...,Bl by identifying the root vertex of Bi with the i-th vertex of Pl. Let Vmn = {Pl(Bi) : N(Pl(Bi)) =n; N(Bi) ≥ 2; l ≥ m}. In this paper, we determine the tree that has the largest \alpha-index among all the trees in Vmn.

  • Referencias bibliográficas
    • Citas [1] Abreu N., Lenes E. and Rojo O.,“The largest Laplacian and adjacency index of complete caterpillars of fixed diameter”, Proyecciones...
    • [2] Cardoso D.M., Cvetković D., Rowlinson P. and Simić S.K., “A sharp lower bound for the least eigenvalue of the signless Laplacian of a...
    • [3] Cvetković D., Rowlinson P. and Simić S. K., An Introduction to the Theory of Graph Spectra, London Mathematical Society Student Texts...
    • [4] Cvetković D., Rowlinson P. and Simić S.K., “Signless Laplacian of finite graphs ”, Linear Algebra Appl. 423 (2007), No. 1, 155–171.
    • [5] Cvetković D. and Simić S.K., “Towards a spectral theory of graphs based on the signless Laplacian I ”, Publ. Inst. Math. (Beograd) 85(99)...
    • [6] Cvetković D. and Simić S.K., “Towards a spectral theory of graphs based on the signless Laplacian II”, Linear Algebra Appl. 432 (2010),...
    • [7] Grone R. and Merris R.,“The Laplacian spectrum of a graph II”, SIAM J. Discrete Math. 7 (1994), No. 2, 221–229.
    • [8] Grone R., Merris R. and Sunder V.S.,“The Laplacian spectrum of a graph”, SIAM J. Matrix Anal. Appl. 11 (1990), No. 2, 218–238.
    • [9] Guo J.M., “On the Laplacian spectral radius of trees with fixed diameter”, Linear Algebra Appl. 419 (2006), No. 2–3, 618–629.
    • [10] Guo J.M. and Shao J.Y., “On the spectral radius of trees with fixed diameter”, Linear Algebra Appl. 413 (2006), No. 1, 131–147.
    • [11] Merris R., “Laplacian matrices of graphs: a survey”, Linear Algebra Appl. 197–198 (1994), 143–176.
    • [12] Nikiforov V., “Merging the A-and Q-spectral theories”, Appl. Anal. Discrete Math. 11 (2017), No. 1, 81–107.
    • [13] Nikiforov V., Pastén G., Rojo O. and Soto R. L., “On the A-spectra of trees”, Linear Algebra Appl. 520 (2017), 286–305.
    • [14] Nikiforov V. and Rojo O.,“On the alpha-index of graphs with pendent paths”, Linear Algebra Appl. 550 (2018), 87–104.
    • [15] Rojo O. and Medina L., “Spectra of generalized Bethe trees attached to a path”, Linear Algebra Appl. 430 (2009), No. 1, 483–503.
    • [16] Rojo O. and Medina L., “Spectra of weighted compound graphs of generalized Bethe trees”,Electron. J. Linear Algebra18 (2009), 30–57.
    • [17] Rojo O., Medina L., Abreu N. and Justel C., “Extremal algebraic connectivities of certain caterpillar classes and symmetric caterpillars”,Electron....
    • [18] Rojo O., Medina L., Abreu N. and Justel C., “On the algebraic connectivity of some caterpillars: A sharp upper bound and a total ordering”,...
    • [19] Simić S. K., Li Marzi E. M. and Belardo F.,“On the index of caterpillars”,Discrete Math. 308 (2008), No. 2–3, 324–330.
    • [20] Varga R.S., Gershgorin and his Circles, Springer Series in computational Mathematics, Springer Verlag, Berlin, 2004.
    • [21] Varga R.S., Matrix Iterative Analysis, Prentice-Hall Inc., 1965.
    • [22] Varga R.S., Matrix Iterative Analysis, Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 2000.
    • [23] Xue J., Lin H., Liu S. and Shu J., “On the A-spectral radius of a graph”, Linear Algebra Appl. 550 (2018), 105–120.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno