Ir al contenido

Documat


The sharp constant in the weak (1,1) inequality for the square function: a new proof

  • Irina Holmes [1] ; Paata Ivanisvili [2] ; Alexander Volberg [3]
    1. [1] Texas A&M University

      Texas A&M University

      Estados Unidos

    2. [2] Princeton University

      Princeton University

      Estados Unidos

    3. [3] Michigan State University

      Michigan State University

      City of East Lansing, Estados Unidos

  • Localización: Revista matemática iberoamericana, ISSN 0213-2230, Vol. 36, Nº 3, 2020, págs. 741-770
  • Idioma: inglés
  • DOI: 10.4171/rmi/1147
  • Enlaces
  • Resumen
    • In this note we give a new proof of the sharp constant C=e−1/2+∫10e−x2/2dx in the weak (1, 1) inequality for the dyadic square function. The proof makes use of two Bellman functions L and M related to the problem, and relies on certain relationships between L and M, as well as the boundary values of these functions, which we find explicitly. Moreover, these Bellman functions exhibit an interesting behavior: the boundary solution for M yields the optimal obstacle condition for L, and vice versa.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno