Ir al contenido

Documat


Bayesian networks to predict financial distress in Spanish Banking

  • JESSICA PAULE-VIANEZ [1] ; JOSE PABLO ARIAS-NICOLáS [2] Árbol académico ; JOSE LUIS COCA-PéREZ [2]
    1. [1] Universidad Rey Juan Carlos

      Universidad Rey Juan Carlos

      Madrid, España

    2. [2] Universidad de Extremadura

      Universidad de Extremadura

      Badajoz, España

  • Localización: Rect@: Revista Electrónica de Comunicaciones y Trabajos de ASEPUMA, ISSN-e 1575-605X, Vol. 20, Nº. 2, 2019, págs. 131-152
  • Idioma: inglés
  • DOI: 10.24309/recta.2019.20.2.02
  • Enlaces
  • Resumen
    • español

      Este trabajo desarrolla un modelo predictivo a corto plazo del financial distress en el sistema bancario español con redes bayesianas. Como las quiebras de bancos han sido escasas, este documento ha considerado también otros problemas financieros, agrupados bajo el término financial distress, como son el incumplimiento de sus obligaciones, la necesidad de intervenci´on de organismos externos, la ayuda estatal, las fusiones y adquisiciones con problemas, y las liquidaciones. Las variables utilizadas para predecir el financial distress en el sistema bancario español han sido variables financieras, clasificadas siguiendo el sistema de calificación de CAMELS, y variables económicas, cuya repercusión en la salud de estas entidades ha sido demostrada por diversos trabajos previos. Con una muestra de 148 instituciones bancarias, la alta tasa de aciertos obtenida demuestra que las redes bayesianas constituyen una metodología prometedora para predecir el financial distress a corto plazo en el sector bancario español.

    • English

      This paper develops a short-term predictive model of financial distress in Spanish banking system with Bayesian networks. As bank failures have been scarce, this document has also considered other financial problems, encompassed under the term financial distress, such as non-compliance with its obligations, the need for intervention by external agencies, state aid, mergers and acquisitions with problems, and liquidations. The variables used to predict financial distress in the Spanish banking system have been financial variables, classified according to the CAMELS rating system, and economic variables, whose impact on the health of these entities has been demonstrated by several previous studies. With a sample of 148 banking institutions, the high success rate obtained shows that the Bayesian networks constitute a promising methodology for predicting short-term financial distress in the Spanish banking sector.

  • Referencias bibliográficas
    • Basel Committee on Banking Supervision (2010). Basel III: A global regulatory framework for more resilient banks and banking systems. Bank...
    • Real Decreto-ley 9/2009, de 26 de junio, sobre reestructuración y reforzamiento de los recursos propios de las entidades de crédito. Boletín...
    • J. Sun, H. Li, Q-H. Huang and K-Y. He, Predicting financial distress and corporate failure: A review from the state-of-the-art de_nitions,...
    • T. B. Bell, G. S. Ribar and J. Verchio, Neural nets versus logistic regression: a comparison of each models ability to predict commercial...
    • M. Odom and R. Sharda, A neural networks model for bankruptcy prediction, in IJCNN International Joint Conference on neural networks (San...
    • C. Serrano and B. Martín (1993). Predicción de la quiebra bancaria mediante el empleo de redes neuronales artificiales, Revista Española de...
    • H. Jo and I. Han, Bankruptcy prediction using case-based reasoning, neural networks, and discriminant analysis, Expert Systems with Applications...
    • T. E. McKee and M. Greenstein, Predicting bankruptcy using recursive partitioning and a realistically proportioned data set, Journal of Forecasting...
    • K-S. Shin, T. S. Lee and H-J. Kim, An application of support vector machines in bankruptcy prediction model, Expert Systems with Applications...
    • C. A. Johnson, Modelos de Alerta Temprana para pronosticar crisis bancarias: desde la extracción de seales a las redes neuronales, Revista...
    • J. H. Min and Y-C. Lee, Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters, Expert Systems...
    • T. Van Gestel, B. Baesens, J. Suykens, D. Poel, D. Baestaens and M. Willekens, Bayesian kernel based classification for financial distress...
    • E. Angelini, G. Di Tollo and A. Roli, A neural network approach for credit risk evaluation, The Quarterly Review of Economics and Finance...
    • T-H. Lin, A cross model study of corporate financial distress prediction in Taiwan: multiple discriminant analysis, logit, probit and neural...
    • W-S. Chen and Y-K. Du, Using neural networks and data mining techniques for the financial distress prediction model, Expert System with Applications...
    • H. Etemadi, A. A. A. Rostamy and H. F. Dehkordi, A genetic programming model for bankruptcy prediction: Empirical evidence from Iran, Expert...
    • H. Li, Y. C. Lee, Y. C. Zhou and J. Sun, The random subspace binary logit (RSBL) model for bankruptcy prediction, Knowledge-Based Systems...
    • F. M. Rafei, S. M. Manzari and S. Bostanian, Financial health prediction models using artificial neural networks, genetic algorithm and multivariate...
    • S. Lee and W. S. Choi, A multi-industry bankruptcy prediction model using back-propagation neural network and multivariate discriminant analysis,...
    • T. Slavici, S. Marris and M. Pirtea, Usage of artificial neural networks for optimal bankruptcy forecasting. Case study: Eastern European...
    • S. Sarkar and R. S. Sriram, Bayesian models for early warning of bank failures, Management Science 47(11) (2001) 1457-1475.
    • L. Sun and P. Shenoy, Using Bayesian networks for bankruptcy prediction: Some methodological issues, European Journal of Operational Research...
    • A. Aghaie and A. Saeedi, Using bayesian networks for bankruptcy prediction: Empirical evidence from Bayesian Networks to Predict Financial...
    • J. Thomson, Predicting Bank Failures in the 1980s, Economic Review of the Federal Reserve Bank of Cleveland 27(1) (1991) 9-20.
    • R. A. Cole and Gunther, Separating the Likelihood and Timing of Bank Failure, Journal of Banking and Finance 19 (1995) 1073-1089.
    • R. Cole and Gunther, Predicting Bank Failures: A Comparison of On- and Of- Site Monitoring Systems, Journal of Financial Services Research...
    • P. Bongini, S. Claessens and G. Ferri, The Political Economy of Distress in East Asian Financial Institutions, Journal of Financial Services...
    • T. Poghosyan, and M. Cihak, Distress in European Banks: An Analysis Based on a New Data Set, Journal of Financial Services Research 40 (2009)...
    • A. Roman and A. C. Sargu, Analysing the Financial Soundness of the Commercial Banks in Romania: An Approach Based of the Camels Framework,...
    • F. Betz, S. Opric?, T. A. Peltonen and P. Sarlin, Predicting distress in European banks, Journal of Banking and Finance 45 (2014) 225-241.
    • P. Wanke, C. P. Barros and J. R. Faria, Financial distress drivers in Brazilian banks: A dynamic slacks approach, European Journal of Operational...
    • A. Constantin, T. A. Peltonen and P. Sarlin, Network linkages to predict bank distress, Journal of Financial Stability 35 (2018) 226-241.
    • B. Gonz_alez-Hermosillo, Determinants of ex-ante banking system distress: A macro-micro empirical exploration of some recent episodes, IMF...
    • T. J. Curry, P. J. Elmer and G. S. Fissel, Equity market data, bank failures and market e_ciency, Journal of Economics and Business 59(6)...
    • W. Beaver, Financial ratios as predictors of failure, Journal of Accounting Research 4 (1966) 71-111.
    • D. R. Carmichael, The meaning and implementation of the Fourth Standard of reporting (American Institute of Certified Public Accountants,...
    • G. Foster, Financial statement analysis (Englewood Cliffs, N.J.: Prentice Hall, 1986)
    • M. Doumpos and C. Zopounidis, A multicriteria discrimination method for the prediction of financial distress. The case of Greece, Multinational...
    • S. A. Ross, R. Westerfield and J. F. Jaffe, Corporate finance (2 Ed.) (Homewood IL, New York, 1999).
    • I. Bose, Deciding the financial health of dot-coms using rough sets, Information & Management 43(7) (2006) 835-846.
    • P. Ravisankar, V. Ravi and I. Bose, Failure prediction of dot-com companies using neural network-genetic programming hybrids, Information...
    • E. I. Altman and E. Hotchkiss, Corporate Financial Distress and Bankruptcy: Predict and Avoid Bankruptcy, Analyze and Invest in Distressed...
    • P. J. Fitzpatrick, A comparison of ratios of successful industrial enterprises with those of failed companies. Certified Public Accountant...
    • R. Smith, and A. Winakor, Changes in financial structure of unsuccessful industrial companies. Bulletin N 51, Bureau of Business Research,...
    • C. Merwin, Financing small corporations in five manufacturing industries, 1926-36 (National Bureau of Economic Research, New York, 1942).
    • E. I. Altman, Financial ratios, discriminant analysis and the prediction of corporate bankruptcy, The Journal of Finance 23(4) (1968) 589-609.
    • E. B. Deakin, A discriminant analysis of predictors of business failure, Journal of Accounting Research 10(1) (1972) 167-179.
    • J. A. Ohlson, Financial ratios and the probabilistic prediction of bankruptcy, Journal of Accounting Research 18(1) (1980) 109-131.
    • M. E. Zmijewski, Methodological issues related to the estimation of financial distress prediction models, Journal of Accounting Research 22...
    • J. Han and M. Kamber, Data mining: concepts and techniques (Morgan Kaufmann, San Francisco, CA, 2001).
    • H. Frydman, E. I. Altman and D. L. Kao, Introducing recursive partitioning for financial classification: the case of financial distress, The...
    • C. S. Park and I. Han, A case-based reasoning with the feature weights derived by analytic hierarchy process for bankruptcy prediction, Expert...
    • H. Li and J. Sun, Ranking-order case-based reasoning for financial distress prediction, Knowledge-Based Systems 21(8) (2008) 868-878.
    • J. Sun, and H. Li, Financial distress early warning based on group decision making, Computers & Operations Research 16 (2009) 885-906.
    • F. Varetto, Genetic algorithms applications in the analysis of insolvency risk, Journal of Banking & Finance 22(10) (1998) 1421-1439.
    • K-S. Shin and Y-J. Lee, A genetic algorithm application in bankruptcy prediction modelling, Expert Systems with Applications 23(3) (2002)...
    • Q. McNemar, Note on the sampling error of the diference between correlated proportions or percentages, Psychometrika 12(2) (1947) 153-157.
    • A. I. Dimitras, R. Slowinski, R. Susmaga and C. Zopounidis, Business failure prediction using rough sets, European Journal of Operational...
    • T. E. McKee, Developing a bankruptcy prediction model via rough sets theory, Intelligent Systems in Accounting and Finance and Management...
    • R. Slowinski and C. Zopounidis, Application of the rough set approach to evaluation of bankruptcy risk, Intelligent Systems in Accounting,...
    • T. E. McKee and T. Lensberg, Genetic programming and rough sets: A hybrid approach to bankruptcy classification, European Journal of Operational...
    • J. C. Paradi, M. Asmild and P. C. Simak, Using DEA and Worst Practice DEA in Credit Risk Evaluation, Journal of Productivity Analysis 21(2)...
    • T. Sueyoshi and M. Goto, Can R&D Expenditure Avoid Corporate Bankruptcy? Comparison Between Japanese Machinery and Electric Equipment...
    • Z. Li, J. Crook and G. Andreeva, Dynamic prediction of _nancial distress using Malmquist DEA, Expert Systems with Applications 80 (2017) 94-106.
    • E. Castillo, J. M. Gutiérrez and S. A. Hadi, Sistemas expertos y modelos de redes probabilísticas (Monografías de la Academia de Ingeniería,...
    • R. E. Neapolitan, Learning Bayesian Networks (Prentice Hall, Illinois, 2003).
    • K. B. Korb and A. E. Nicholson, Bayesian Arti_cial Intelligence (CRC press, Florida, 2003)
    • F. Jensen, Bayesian Networks and Decision Graphs (Springer-Verlag., New York, 2001).
    • F. Calle, Técnicas Bayesianas de apoyo a la toma de decisiones y sus aplicaciones, Ph. D. tesis (Universidad de Extremadura, 2014).
    • J. Pearl, Bayesian networks: A model of self-activated memory for evidential reasoning, in Proceeding of the 7th Conference of the Cognitive...
    • L. Stevens, Arti_cial Intelligence. The Search for the Perfect Machine (Hayden Book Company Hasbrouck Heights, N.J., 1984)
    • J. Tuya, I. Ramos and J. Dolado, Técnicas cuantitativas para la gestión en la ingeniería del software (NetBiblio, La Coruña, 2007).
    • M. Beltrán, A. Muñoz and Á. Muñoz, Redes bayesianas aplicadas a problemas de credit scoring. Una aplicación práctica, Cuadernos de Economía...
    • J. Laffarga, J. L. Martín and M. J. Vázquez, El análisis de la solvencia en las instituciones bancarias: Propuesta de una metodología y aplicaciones...
    • V. Pina, La información contable en la predicción de la Crisis Bancaria 1977-1985, Revista Española de Financiación y Contabilidad - Spanish...
    • S. Zhang, Nearest neighbour selection for iteratively kNN imputation, Journal of Systems and Software 85(11) (2012) 2541-2552.
    • N. Friedman, D. Geiger and M. Goldszmidt, Bayesian Networks Classifers, Machine Learning 29 (1997) 131-163.
    • C. K. Chow and C. N. Liu, Approximating Discrete Probability Distributions with Dependence Trees, IEEE Transactions on Information Theory...
    • J. Hernández, Introducción a la minería de datos (Pearson-Prentice Hall, Madrid, 2004)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno