Ir al contenido

Documat


El teorema de Karush-Kuhn-Tucker, una generalización del teorema de los multiplicadores de Lagrange, y programación convexa

  • Martínez Sánchez, Fco. Javier [1]
    1. [1] Universidad de Granada

      Universidad de Granada

      Granada, España

  • Localización: TEMat: Divulgación de trabajos de estudiantes de matemáticas, ISSN-e 2530-9633, Nº. 3, 2019, págs. 33-44
  • Idioma: español
  • Enlaces
  • Resumen
    • español

      El presente artículo pretende mostrar una generalización del teorema de los multiplicadores de Lagrange, que resuelve problemas de optimización condicionados solo a restricciones de igualdad. El teorema de Karush-Kuhn-Tucker es una extensión suya que resuelve problemas de optimización condicionados tanto a restricciones de igualdad como de desigualdad. En la primera sección del presente texto, se enuncia y comenta el teorema de Lagrange y se incluye un ejemplo de aplicación. En la segunda sección, se enuncia y se demuestra el teorema que extiende al teorema de Lagrange, incluyendo un ejemplo ilustrativo. En la tercera y última sección, se hace una breve introducción a la programación convexa y cóncava y se prueba la condición suficiente en programación convexa y cóncava.

    • English

      This paper expects to show a generalization of the Lagrange multiplier rule, which solves optimization problems with only equality constraints. The Karush-Kuhn-Tucker theorem is an extention of this result in which inequality constraints are also considered. In the first section of this text, we discuss the Lagrange multiplier rule, including one example. In the second one, we prove the Karush-Kuhn-Tucker theorem, including another example. In the third and last one, we make a brief introduction to convex and concave programming and we prove a sufficient condition in convex and concave programming.

  • Referencias bibliográficas
    • APOSTOL, Tom M.Análisis matemático. Trad. por Vélez Cantarell, Francisco. Barcelona: Reverté, 1960.
    • BLISS, G. A. «Normality and abnormality in the calculus of variations». En:Transactions of theAmerican Mathematical Society43.3 (1938), págs....
    • DANTZIG, George B.Linear programming and extensions. RAND Corporation, 1963, págs. xvi+625.https://doi.org/10.7249/R366.
    • KANTOROVICH, L. V. «Mathematical methods of organizing and planning production». En:Mana-gement Science. Journal of the Institute of Management...
    • KARUSH, William.Minima of functions of several variables with inequalities as side conditions. Thesis(SM). The University of Chicago, 1939,...
    • KJELDSEN, Tinne Hoff. «A contextualized historical analysis of the Kuhn-Tucker theorem in nonlinearprogramming: the impact of World War II»....
    • KUHN, Harold W. «Nonlinear programming: a historical view». En:Nonlinear programming Procee-dings of a Symposium in Applied Mathematics Held...
    • LAGRANGE, Joseph-Louis.Mécanique analytique. Edición revisada. Librairie Scientifique et TechniqueAlbert Blanchard, 1965.
    • MARTÍNEZ SÁNCHEZ, Francisco Javier.Una generalización del teorema de los multiplicadores deLagrange: condiciones de Karush-Kuhn-Tucker en...
    • MCSHANE, Edward J. «The Lagrange Multiplier Rule». En:The American Mathematical Monthly80.8(1973), págs. 922-925.https://doi.org/10.1080/00029890.1973.11993409.
    • NEUMANN, John von yMORGENSTERN, Oskar.Theory of Games and Economic Behavior. PrincetonUniversity Press, Princeton, New Jersey, 1944, págs....
    • PERESSINI, Anthony L.;SULLIVAN, Francis E., yUHL, J. J., Jr.The mathematics of nonlinear program-ming. Undergraduate Texts in Mathematics....
    • PRÉKOPA, András. «On the development of optimization theory». En:The American MathematicalMonthly87.7 (1980), págs. 527-542.ISSN: 0002-9890.https://doi.org/10.2307/2321417.
    • SYDSAETER, Knut yHAMMOND, Peter.Matemáticas para el análisis económico. Prentice Hall, 1996.ISBN: 978-0-13-240615-4.
    • WU, Hui-Hua yWU, Shanhe. «Various proofs of the Cauchy-Schwarz inequality». En:Octogon Mat-hematical Magazine17.1 (2009), págs. 221-229

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno