Bilbao, España
Madrid, España
Estados Unidos
El teorema de Weierstrass es un resultado clásico sobre la aproximación de funciones continuas mediante polinomios en intervalos cerrados y acotados de $\mathbb{R}$. En este artículo tratamos una generalización de dicho teorema que, en vez de polinomios, considera potencias cuyos exponentes satisfacen ciertas propiedades. Este resultado se conoce como el teorema de aproximación de Müntz-Szász. En primer lugar, introducimos teoría básica del análisis real y complejo, que será útil para probar los resultados principales y, a continuación, presentamos el teorema y la prueba dada por Szász.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados