Ir al contenido

Documat


Fano’s Inequality for Random Variables

  • Gerchinovitz, Sébastien [1] ; Ménard, Pierre [1] ; Stoltz, Gilles [2]
    1. [1] Paul Sabatier University

      Paul Sabatier University

      Arrondissement de Toulouse, Francia

    2. [2] Univerité Paris-Sud
  • Localización: Statistical science, ISSN 0883-4237, Vol. 35, Nº. 2, 2020, págs. 178-201
  • Idioma: inglés
  • DOI: 10.1214/19-STS716
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We extend Fano’s inequality, which controls the average probability of events in terms of the average of some f-divergences, to work with arbitrary events (not necessarily forming a partition) and even with arbitrary [0,1]-valued random variables, possibly in continuously infinite number. We provide two applications of these extensions, in which the consideration of random variables is particularly handy: we offer new and elegant proofs for existing lower bounds, on Bayesian posterior concentration (minimax or distribution-dependent) rates and on the regret in nonstochastic sequential learning.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno