Ir al contenido

Documat


Soluciones Numéricas para la Ecuación KdV Usando el MétodoWavelet-Petrov-Galerkin

  • Duarte Vidal, Julio Cesar [1] ; Reyes Bahamón, Francisco Javier [1]
    1. [1] Universidad Surcolombiana

      Universidad Surcolombiana

      Colombia

  • Localización: Selecciones Matemáticas, ISSN-e 2411-1783, Vol. 6, Nº. 2, 2019 (Ejemplar dedicado a: Agosto-Diciembre), págs. 148-155
  • Idioma: español
  • DOI: 10.17268/sel.mat.2019.02.02
  • Títulos paralelos:
    • Numerical Solutions of the KdV Equation for Wavelet-Petrov-Galerkin Method
  • Enlaces
  • Resumen
    • español

      Este trabajo Contiene la solución numérica de la ecuación KdV usando el método de Petrov-Galerkin-Wavelet. Lo interesante es poder calcular las integrales Wavelets, usando Wavelets Biortogonales, las propiedades de simetría permiten que los cálculos se reduzcan ostensiblemente. Aquí aplicaremos conceptos del análisis funcional y la teoría de distribuciones inmersos en el cálculo de la derivada débil o derivada distribucional. Hasta obtener gráficamente la solución numérica y la solución analítica de esta ecuación muy usada en la parte de la tecnología deondas y comunicaciones, como también en la reconstrucción de imágenes. Recientemente, los métodos de wavelet se aplican a la solución numérica de ecuaciones diferenciales parciales, trabajos pioneros en esta dirección son las de Beylkin, Dahmen, Jaffard y Glowinski, entre otros.

    • English

      This work contains the numerical solution of the KdV equation using the Petrov-Galerkin-Wavelet method. The interesting thing is to be able to calculate Wavelet integrals, using Biorthogonal Wavelets, the properties of symmetry allow the calculations to be significantly reduced. Here we will apply concepts of functional analysis and the theory of distributions immersed in the calculation of the weak derivative or distributional derivative. To obtain graphically the numerical solution and the analytical solution of this equation very used in the part of the wave and communications technology, as well as in the reconstruction of images. Recently, wavelet methods are applied to the numerical solution of partial differential equations, pioneering works in this direction are those of Beylkin, Dahmen, Jaffard and Glowinski, among others.

  • Referencias bibliográficas
    • Beylkin, G., Keiser, J. M. On the Adaptive Numerical Solution of Nonlinear Partial Differential Equations in Wavelet bases,
    • Journal of Computational Physics. 1997; 132:233-259.
    • Biswas, A., Konar, S. Soliton perturbation theory for the compound KdV equation. International Journal of Theoretical Physics. 2007; 46(2):237...
    • Bleistein, N., Handelsman, R. Asymptotic Expansions of Integrals. Dover Publications, Inc. New York; 1986.
    • Canivar, A. sari, M. and Dag, I., A Taylor - Galerkin finite element method for the KdV equation using cubic B-Splines. Physica B. 2010; 405:3376-3383.
    • Chiavassa, G., Liandrat, J. A fully adaptive wavelet algorithm for parabolic partial differential equations, Applied Numerical Mathematics....
    • Cohen, A., Daubechies, I., and Feauveau, J. C. Biorthogonal basis of compactly supported wavelets, Comm. Pure Appl. Math. 1992; 45:485-560.
    • Dahmen,W.Wavelet methods for PDEs-some recent developments, Journal of Computational and Applied Mathematics. 2001; 128:133-185.
    • Daubechies, I. Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 1988; 41:909-996.
    • Debnath, L. Nonlinear Partial Differential Equations: for Scientists and Engineers. Second Edition, Birkhäuser, Boston; 2005.
    • Donea, J. Huerta, A. Finite Element Methods for Flow problems. John Wiley and Sons, Ltd. England, 2003.
    • Drazin, P. G., Johnson, R. S. Solitons: An Introduction. Second Edition, Cambridge University Press, New York, 1989.
    • Glowinski, R., Lawton, W., Ravachol, M., and Tenenbaum, E. Wavelet solution of linear and non-linear elliptic, parabolic and hyperbolic problems...
    • Gomes, S., Cortina, E. Fourier Analysis of Petrov-Galerkin Methods Based on Biorthogonal Multiresolution Analysis, pp 119-140 in Wavelets...
    • Lemarié, F. G. Functions a support compact dans les analyses multiresolutions, Revista matemática Iberoamericana, 1991; 7(2):157 - 182.
    • Lewis, R. W., Nithiarasu, P., Seetharamu, K. N. Fundamentals of the finite element method for Heat and Fluid Flow. John Wiley and Sons, Inc....
    • Meyer, Y. Ondelettes et opérateurs, I: Ondelettes. Herman, Paris, 1990.
    • Rathish, B. V., Mehra, M. Time - accurate solutions of Korteweg-de Vries equation using wavelet Galerkin method. Applied Mathematics and Computation....
    • Shoombie, S. W. Spline Petrov - Galerkin methods for the numerical solution of the Korteweg-de Vries equation. IMA Journal of Numerical Analysis,...
    • Shen, X. A Galerkin-wavelet method for a singular convolution equation on the real line, J. Int. Equa. Appl. 2000; 12:157-176.
    • Urban, K. Wavelet Methods for Elliptic Partial Differential Equations. Oxford University Press Inc., New York, 2009.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno