Ir al contenido

Documat


Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev

  • Autores: Héctor Esteban Pijeira Cabrera Árbol académico, Yamilet Quintana, Wilfredo Urbina Romero Árbol académico
  • Localización: Revista Colombiana de Matemáticas, ISSN-e 0034-7426, Vol. 35, Nº. 2, 2001, págs. 77-97
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this article we consider the Sobolev orthogonal polynomials associated to the Jacobi's measure on [-1, 1]. It is proven that for the class of monic Jacobi-Sobolev orthogonal polynomials, the smallest closed interval that contains its real zeros is [-√(1+2C, √ 1+2C] with C a constant explicitly determined. The asymptotic distribution of those zeros is studied and also we analyze the asymptotic comparative behavior between the sequence of monic Jacobi-Sobolev orthogonal polynomials and the sequence of monic Jacobi ortogonal polynomials under certain restrictions.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno