Ir al contenido

Documat


Gráfico Q-Q modificado para grandes tamaños de muestra.

  • Jorge Iván Velez [1] ; Juan Carlos Correa Morales [2]
    1. [1] Australian National University

      Australian National University

      Australia

    2. [2] Universidad Nacional de Colombia

      Universidad Nacional de Colombia

      Colombia

  • Localización: Comunicaciones en Estadística, ISSN 2027-3355, ISSN-e 2339-3076, Vol. 8, Nº. 2, 2015, págs. 163-172
  • Idioma: español
  • DOI: 10.15332/s2027-3355.2015.0002.02
  • Títulos paralelos:
    • A modified Q-Q plot for large sample sizes.
  • Enlaces
  • Resumen
    • español

      El gráfico Q-Q es una herramienta para determinar si los datos observados se ajustan a una distribución de probabilidad teórica, en el que cada observación en los datos es representada por un símbolo. En muchas ocasiones, debido a variaciones naturales en los datos o un gran tamaño de muestra, el gráfico Q-Q puede interpretarse como una falla en el modelo probabilístico propuesto. Una alternativa es considerar un conjunto de características de los datos tales como los cuantiles muestrales que, en conjunto con su equivalente teórico, permitan al usuario comparar ambos de manera efectiva. Proponemos e ilustramos un gráfico Q-Q modificado que permite visualizar las diferencias entre los cuantiles observados y teóricos, y remediar algunas dificultades técnicas del gráfico tradicional.

    • English

      The Q-Q plot is a graphical tool for assessing the goodness-of-fit of observed data to a theoretical distribution in which every single observation in the data is represented by a symbol. In many occasions, due to either natural variations of the data or to a large sample size, the Q-Q plot could be interpreted as a sign of failure of the proposed model. One alternative is to consider a special set of characteristics of the data such as the sample quantiles that, jointly with its theoretical counterparts, allow the user to effectively compare both. We propose and illustrate a modified Q-Q plot that helps to visualise the differences between the observed quantiles and their corresponding theoretical values, and overcome some technical problems of the traditional Q-Q plot.

  • Referencias bibliográficas
    • Benjamini, Y. & Hochberg, Y. (1995), ‘Controlling the false discovery rate: A practical and powerful approach to multiple testing’, Journal...
    • Burn, D. A. (1993), ‘Designing Effective Statistical Graphs’, Handbook of Statistics 9, 828–833.
    • Cleveland, W. & McGill, R. (1985), ‘Graphical Perception and Graphical Methods for Analyzing Scientific Data’, Science 229(4716), 828–833.
    • Cleveland, W. S. (1985), The Elements of Graphing Data, 1 edn, Wadsworth: Monterey.
    • DasGupta, A. (1985), The Use and Abuse of the Q − Q Plot: Some Asymptotic Theory, Technical Report #95-30, Department of Statistics, Purdue...
    • Dhar, S. S., Chakraborty, B. & Chaudhuri, P. (2014), ‘Comparison of Multivariate Distributions using Quantile-Quantile Plots and Related...
    • Easton, G. S. & McCulloch, R. E. (1990), ‘A Multivariate Generalization of Quantile-Quantile Plots’, Journal of the American Statistical...
    • Fienberg, S. E. (1979), ‘Graphical Methods in Statistics’, The American Statistician 33(4), 165–178.
    • Hsu, J. C. (1996), Multiple Comparison: Theory and Methods, Chapman & Hall, Great Britain.
    • Marden, J. I. (1998), ‘Bivariate QQ plots and Spider Web plots’, Statistica Sinica 8, 813–826.
    • Marden, J. I. (2004), ‘Positions and QQ Plots’, Statistical Science 19(4), 606–614.
    • Marmolejo-Ramos, F., Vélez, J. I. & Rom˜ao, X. (2015), ‘Automatic detection of discordant outliers via the Ueda’s method’, Journal of...
    • Nair, V. N. (1982), ‘Q-Q Plots with Confidence Bands for Comparing Several Populations’, Scandinavian Journal of Statistics 9(4), 1993–200.
    • R Core Team (2014), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria.*http://www.R-project.org/
    • Rosenkrantz, W. A. (2000), ‘Confidence Bands for Quantile Functions: A Parametric and Graphic Alternative for Testing Goodness of Fit’, The...
    • Roy, S. N. & Bose, R. C. (1953), ‘Simultaneous confidence interval estimation’, The Annals of Mathematical Statistics 24(4), 513–536.
    • Schaffer, J. P. (1995), ‘Multiple Hypothesis Testing: A Review’, Annu. Rev. Psychol. 46, 561–84.
    • Serfling, R. J. (1980), Approximation Theorems of Mathematical Statistics, Wiley: New York.
    • Tufte, E. (1983), The Visual Display of Quantitative Information, Graphics Press: Cheshire.
    • Tukey, J. W. (1977), Exploratory Data Analysis, Addison-Wesley Publishing Company: Reading, Massachusetts.
    • Tukey, J. W. (1990), ‘Data-Based Graphics: Visual Display in the Decades to Come’, Statistical Science 5(3), 327–339.
    • Ueda, T. (1996/2009), ‘A simple method for the detection of outliers’, Electronic Journal of Applied Statistical Analysis 2(1), 67–76.
    • Van der Loo, M. P. (2010), Distribution-based outlier detection for univariate data, Technical Report 10003, Statistics Netherlands, The Hague/Heerlen.
    • Wainer, H. (1981), ‘Graphical Data Analysis’, Annual Review of Psychology 32(1), 191–204.
    • Wainer, H. (1984), ‘How to Display Data Badly’, The American Statistician 38(2), 137–147.
    • Wainer, H. (1990), ‘Graphical Visions from William Playfair to John Tukey’, Statistical Science 5(3), 340–346.
    • Wilk, M. B. & Gnanadesikan, R. (1968), ‘Probability Plotting Methods for the Analysis of Data’, Biometrika 55(1), 1–17.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno