Ir al contenido

Documat


Local boundedness for minimizers of convex integral functionals in metric measure spaces

  • Huiju Wang [1] ; Pengcheng Niu [2]
    1. [1] Zhongnan University (China)
    2. [2] Northwestern Polytechnical University (China)
  • Localización: Mathematica scandinavica, ISSN 0025-5521, Vol. 126, Nº 2, 2020, págs. 259-275
  • Idioma: inglés
  • DOI: 10.7146/math.scand.a-116244
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this paper we consider the convex integral functional I:=∫ΩΦ(gu)dμ in the metric measure space (X,d,μ), where X is a set, d is a metric, µ is a Borel regular measure satisfying the doubling condition, Ω is a bounded open subset of X, u belongs to the Orlicz-Sobolev space N1,Φ(Ω), Φ is an N-function satisfying the Δ2-condition, gu is the minimal Φ-weak upper gradient of u. By improving the corresponding method in the Euclidean space to the metric setting, we establish the local boundedness for minimizers of the convex integral functional under the assumption that (X,d,μ) satisfies the (1,1)-Poincaré inequality. The result of this paper can be applied to the Carnot-Carathéodory space spanned by vector fields satisfying Hörmander's condition.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno