Ir al contenido

Documat


Consumo e inversión óptimos y valuación de opciones asiáticas en un entorno estocástico con fundamentos microeconómicos y simulación Monte Carlo

  • Autores: Araceli Matías González, María Teresa V. Martínez Palacios, Ambrosio Ortiz Ramírez
  • Localización: Revista Mexicana de Economía y Finanzas (REMEF): nueva época, ISSN-e 2448-6795, ISSN 1665-5346, Vol. 14, Nº. 3, 2019, págs. 397-414
  • Idioma: español
  • DOI: 10.21919/remef.v14i3.408
  • Títulos paralelos:
    • Optimal consumption and investment and Asian option pricing in a stochastic environment with microeconomic foundations and Monte Carlo simulation
  • Enlaces
  • Resumen
    • español

      Resumen En esta investigación se presenta un modelo alternativo que caracteriza el precio de una opción asiática de venta del tipo europeo con precio de ejercicio variable con media aritmética suscrita sobre una acción cuya volatilidad es estocástica; mediante un sistema de ecuaciones diferenciales que proviene de un modelo de control óptimo estocástico en tiempo continuo. Para tal efecto se desarrolla un modelo de un agente racional que dispone de una riqueza inicial y enfrenta la decisión de distribuir su riqueza entre consumo e inversión en un portafolio de activos, que incluye una opción asiática de venta y europea con precio de ejercicio con media aritmética, en un horizonte temporal finito. La valuación se lleva a cabo en términos del monto que el consumidor está dispuesto a pagar por mantener su contrato de opción asiática a fin de cubrirse contra riesgo de mercado. Asimismo, se aproximan los precios de opciones europeas y asiáticas de compra y venta por simulación Monte Carlo con parámetros calibrados adaptando el modelo de Cox-Ingersoll-Ross con volatilidad realizada. La fórmula de valuación obtenida no se había determinado mediante fundamentos de racionalidad económica. La evidencia empírica señala que los precios son muy cercanos en el corto plazo, pero a largo plazo, la diferencia entre las europeas y las asiáticas aumenta.

    • English

      Abstract This research presents an alternative model that characterizes the price of an European-style Asian put option with variable exercise price with arithmetic average subscribed on an stock whose volatility is stochastic, through a system of differential equations that comes from a model of stochastic optimal control in continuous time. For this purpose, a model of a rational agent is developed that has an initial wealth and faces the decision of distributing its wealth between consumption and investment in a portfolio of assets, which includes an European-style Asian put option with exercise price with arithmetic average, in a finite temporal horizon. The valuation is carried out in terms of the amount that the consumer is willing to pay to maintain its Asian option contract in order to hedge against market risk. Also, prices of European and Asian call and put options are approximated by Monte Carlo simulation with calibrated parameters adapting the Cox-Ingersoll-Ross model with realized volatility. The valuation formula obtained was not determined by fundamentals of economic rationality. The empirical evidence indicates that prices are very close in the short term, but in the long term, the difference between European and Asian prices increases.

  • Referencias bibliográficas
    • Arregui, G.,Vallejo, B.. (2001). Análisis de valoración de las opciones asiáticas utilizadas por los fondos de inversión garantizados de renta...
    • Barraquand, J.,Y Martineau, D.. (1995). Numerical Valuation of High Dimensional Multivariate American Securities. The Journal of Financial...
    • Ben, A.,Kebaier, A.. (2014). Multilevel Monte Carlo for Asian options and limit theorems. Monte Carlo methods and applications. 20. 181
    • Boyle, P.P.. (1977). Options: A Monte Carlo approach. Journal of Financial Economics. 4. 323
    • Cai, N.,Song, Y.,Kou, S.. (2015). A general framework for pricing Asian options under Markov processes. Operations research. 63. 489-749
    • Chung, S. f.,H. Y., Wong. (2014). Analytical pricing of discrete arithmetic Asian options with mean reversion and jumps. Journal of Banking...
    • Cox, J. C.,Ingersoll, J. E.,Ross, S. A.. (1985). A theory of the term structure of interest rates. Econometrica. 53. 385-407
    • Datey, J.,Gauthier, G.,Simonato, J.. (2003). The Performance of Analytical Approximations for the Computation of Asian Quanto-Basket Option...
    • Dufresne, D.. (2000). Laguerre Series for Asian and Other Options. Mathematical Finance. 10. 407
    • Fu, M.,Madan, D. B.,Wang, T.. (1999). Pricing continuous Asian options: a comparison of Monte Carlo and Laplace transform inversion methods....
    • Foufas, G.,Larson, M. G.. (2008). Valuing Asian options using the finite element method and duality techniques. Journal of Computation al...
    • Heston, S. L.. (1993). A Closed-Form Solution for Options with Stochastic Volatility with Application to Bond and Currency Options. The Review...
    • Hozman, J.,Tichý, T.,Cvejnová, D.. (2016). A Discontinuous Galerkin Method for Two-dimensional PDE Models of Asian Options. AIP Conference...
    • Huang, C.S.,O’Hara, J.G.,Mataramvura, S.. (2017). Efficient pricing of discrete arithmetic Asian options under mean reversion and jumps based...
    • Hubalek, F.,Keller-Ressel, M.,Sgarra, C.. (2017). Geometric Asian option pricing in general affine stochastic volatility models with jumps....
    • Hull, J.,White, A.. (1987). The Pricing of Options on Assets with Stochastic Volatilities. The Journal of Finance. 42. 281-300
    • Jeon, J,Yoon, J.,Kang, M.. (2016). Valuing vulnerable geometric Asian options. Computers Mathematics with Applications. 71. 676
    • Kemna, A.,Vorst, A.. (1990). A pricing method for options based on average values. Journal of Banking Finance. 14. 113
    • Kim, B.,Wee, I.. (2014). Pricing of geometric Asian options under Heston’s stochastic volatility model. Quantitative Finance. 14. 1795
    • Levy, E.. (1992). Pricing European average rate currency options. Journal of International Money and Finance. 11. 474
    • Linetsky, V.. (2004). Spectral Expansions for Asian (Average Price) Options. Operations Research. 52. 856
    • Marcozzi, M.. (2003). On the valuation of Asian options by variational methods. SIAM Journal on Scientific Computing. 24. 1124
    • Martínez-Palacios, M.,Venegas-Martínez, F.. (2011). Control óptimo estocástico en la enseñanza de la economía matemática. Educación Matemática....
    • Martínez-Palacios,Sánchez-Daza,Venegas-Martínez. (2012). Valuación de opciones americanas: un enfoque de control óptimo estocástico en un...
    • Martínez-Palacios, M.,Venegas-Martínez, F.,Martínez-Sánchez, J.. (2015). Consumption and portfolio decisions of a rational agent that has...
    • Mehrdoust, F.. (2015). A new hybrid Monte Carlo simulation for Asian options pricing. Journal of Statistical Computation and Simulation. 85....
    • Mehrdoust, F.,Saber, N.. (2015). Pricing arithmetic Asian option under a two-factor stochastic volatility model with jumps. Journal of Statistical...
    • Merton, C.. (1971). Optimum Consumption and Portfolio Rules in a Continuous Time Model. Journal of Economic Theory. 3. 373-413
    • Oro, J.. (2004). Derivados financieros. Universidad de Buenos Aires. Facultad de Ciencias Económicas. Escuela de Estudios de Posgrado.. Buenos...
    • Prakasa, R.. (2016). Pricing geometric Asian power options under mixed fractional Brownian motion environment. Physica A: Statistical Mechanics...
    • Rogers, L.,Shi, Z.. (1995). The value of an Asian option. Journal of Applied Probability. 32. 1077
    • Sengupta, I.. (2014). Pricing Asian options in financial markets using Mellin transforms. Electronic Journal of Differential Equations. 234....
    • Shirakaya, K.,Takahashi, A.. (2017). A general control variate method for multi-dimensional SDEs: An application to multi-asset options under...
    • Turnbull, S.,Wakeman, L.. (1991). A quick algorithm for pricing European average options. Journal of Financial and Quantitative Analysis....
    • Vecer, J.. (2001). A new PDE approach for pricing arithmetic average Asian options. Journal of Computational Finance. 4. 105
    • Vecer, J.. (2002). Unified Asian pricing. Risk. 15. 113
    • Venegas-Martínez, F.. (2008). Riesgos financieros y económicos, productos derivados y decisiones económicas bajo incertidumbre. Cengage. México....
    • Venegas-Martínez, F.,Aguilar-Sánchez, G.. (2005). Maximización de utilidad y valuación de opciones con volatilidad estocástica. Revista Mexicana...
    • Venezia, I.. (2010). Handbook of Quantitative Finance and Risk Management. Springer. Boston, MA.
    • Wang, Z.,Wang, L.,Wang, D.,Jin, Y.. (2014). Optimal system, symmetry reductions and new closed form solutions for the geometric average Asian...
    • Yor, M.. (1992). On some exponential functionals of Brownian motion. Advances in Applied Probability. 24. 509
    • Zeng, P.,Kwok, Y.. (2016). Pricing bounds and approximations for discrete arithmetic Asian options under time-changed Lévy processes. Quantitative...
    • Zhang, Z.,Liu, W.. (2014). Geometric Average Asian Option Pricing for Uncertain Financial Market. Journal of Uncertain Systems. 8. 317
    • Zhang, W.,Xiao, W.,Kong, W.,Zhang, Y.. (2015). Fuzzy pricing of geometric Asian options and its algorithm. Applied Soft Computing. 28. 360
    • Zvan, R.,Forsyth, P.,Vetzal, K.. (1997). Robust numerical methods for PDE models of Asian options. Journal of Computational Finance. 1. 39-78
Los metadatos del artículo han sido obtenidos de SciELO México

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno