Ir al contenido

Documat


Fan-Gottesman Compactification and Scattered Spaces

  • Autores: Ceren Sultan Elmali, Tamer Ugur
  • Localización: Applied Mathematics and Nonlinear Sciences, ISSN-e 2444-8656, Vol. 5, Nº. 1, 2020, págs. 475-478
  • Idioma: inglés
  • DOI: 10.2478/amns.2020.1.00045
  • Enlaces
  • Resumen
    • Compactification is the process or result of making a topological space into a compact space. An embedding of a topological space X as a dense subset of a compact space is called a compactification of X. There are a lot of compactification methods but we study with Fan- Gottesman compactification. A topological space X is said to be scattered if every nonempty subset S of X contains at least one point which is isolated in S. Compact scattered spaces are important for analysis and topology. In this paper, we investigate the relation between the Fan- Gottesman compactification of T3 space and scattered spaces. We show under which conditions the Fan-Gottesman compactification X is a scattered.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno