Ir al contenido

Documat


Predicting School Failure and Dropout by Using Data Mining Techniques

  • Carlos Marquez-Vera [1] ; Cristóbal Romero Morales [2] ; Sebastián Ventura Soto [2]
    1. [1] Universidad Autónoma de Zacatecas

      Universidad Autónoma de Zacatecas

      México

    2. [2] Universidad de Córdoba

      Universidad de Córdoba

      Cordoba, España

  • Localización: Revista Iberoamericana de Tecnologías del Aprendizaje: IEEE-RITA, ISSN 1932-8540, Vol. 8, Nº. 1, 2013, págs. 7-14
  • Idioma: inglés
  • DOI: 10.1109/rita.2013.2244695
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • This paper proposes to apply data mining techniques to predict school failure and dropout. We use real data on 670 middle-school students from Zacatecas, México, and employ white-box classification methods, such as induction rules and decision trees. Experiments attempt to improve their accuracy for predicting which students might fail or dropout by first, using all the available attributes; next, selecting the best attributes; and finally, rebalancing data and using cost sensitive classification. The outcomes have been compared and the models with the best results are shown.

  • Referencias bibliográficas
    • L. A. Alvares Aldaco, “Comportamiento de la deserción y reprobaciónen el colegio de bachilleres del estado de baja california: Caso plantelensenada,”...
    • F. Araque, C. Roldán, and A. Salguero, “Factors influencing universitydrop out rates,” Comput. Educ., vol. 53, no. 3, pp. 563–574, 2009.
    • M. N. Quadril and N. V. Kalyankar, “Drop out feature of student datafor academic performance using decision tree techniques,” Global J.Comput....
    • C. Romero and S. Ventura, “Educational data mining: A survey from1995 to 2005,” Expert Syst. Appl., vol. 33, no. 1, pp. 135–146, 2007.
    • C. Romero and S. Ventura, “Educational data mining: A review of thestate of the art,” IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol....
    • S. Kotsiantis, K. Patriarcheas, and M. Xenos, “A combinational incremental ensemble of classifiers as a technique for predicting students’performance...
    • J. Más-Estellés, R. Alcover-Arándiga, A. Dapena-Janeiro,A. Valderruten-Vidal, R. Satorre-Cuerda, F. Llopis-Pascual, T.Rojo-Guillén, R. Mayo-Gual,...
    • S. Kotsiantis, “Educational data mining: A case study for predictingdropout—prone students,” Int. J. Know. Eng. Soft Data Paradigms,vol. 1,...
    • I. Lykourentzou, I. Giannoukos, V. Nikolopoulos, G. Mpardis, andV. Loumos, “Dropout prediction in e-learning courses through thecombination...
    • A. Parker, “A study of variables that predict dropout from distanceeducation,” Int. J. Educ. Technol., vol. 1, no. 2, pp. 1–11, 1999.
    • T. Aluja, “La minería de datos, entre la estadística y la inteligencia artificial,” Quaderns d’Estadística Invest. Operat., vol. 25, no. 3,pp....
    • M. M. Hernández, “Causas del fracaso escolar,” in Proc. 13th Congr.Soc. Española Med. Adolescente, 2002, pp. 1–5.
    • E. Espíndola and A. León, “La deserción escolar en américa latina:Un Tema prioritario para la agenda regional,” Revista Iberoamer. Educ.,vol....
    • I. H. Witten and F. Eibe, Data Mining, Practical Machine Learning Toolsand Techniques, 2nd ed. San Mateo, CA, USA: Morgan Kaufman, 2005.
    • M. A. Hall and G. Holmes, “Benchmarking attribute selection techniquesfor data mining,” Dept. Comput. Sci., Univ. Waikato, Hamilton, NewZealand,...
    • N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,“Synthetic minority over-sampling technique,” J. Artif. Intell. Res.,vol. 16,...
    • J. Cendrowska, “PRISM: An algorithm for inducing modular rules,” Int.J. Man-Mach. Stud., vol. 27, no. 4, pp. 349–370, 1987.
    • J. R. Quinlan, C4.5: Programs for Machine Learning. San Mateo, CA,USA: Morgan Kaufman, 1993.
    • L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classificationand Regression Trees. New York, USA: Chapman & Hall, 1984.
    • Y. Freund and L. Mason, “The alternating decision tree algorithm,” inProc. 16th Int. Conf. Mach. Learn., 1999, pp. 124–133.
    • L. Fourtin, D. Marcotte, P. Potvin, E. Roger, and J. Joly, “Typology ofstudents at risk of dropping out of school: Description by personal,family...
    • L. G. Moseley and D. M. Mead, “Predicting who will drop out of nursingcourses: A machine learning exercise,” Nurse Educ. Today, vol. 28, no....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno