Ir al contenido

Documat


On a metric of the space of idempotent probability measures

  • Zaitov, Adilbek Atakhanovich [1]
    1. [1] Tashkent Institute of Architecture and Civil Engineering
  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 21, Nº. 1, 2020, págs. 35-51
  • Idioma: inglés
  • DOI: 10.4995/agt.2020.11865
  • Enlaces
  • Resumen
    • In this paper we introduce a metric on the space I(X) of idempotent probability measures on a given compact metric space (X; ρ), which extends the metric ρ. It is proven the introduced metric generates the pointwise convergence topology on I(X).

  • Referencias bibliográficas
    • M. Akian, Densities of idempotent measures and large deviations, Trans. Amer. Math. Soc. 351 (1999), 4515-4543. https://doi.org/10.1090/S0002-9947-99-02153-4
    • G. Choquet,Theory of capacities, Ann. Inst. Fourier 5 (1955), 131-295. https://doi.org/10.5802/aif.53
    • V. V. Fedorchuk, Triples of infinite iterates of metrizable functors, Math. USSR-Izv. 36, no. 2 (1991), 411-433. https://doi.org/10.1070/IM1991v036n02ABEH002028
    • V. V. Fedorchuk and V. V. Filippov, General topology. Basic constructions, Moscow, MSU, 1988.
    • E. Hopf, The partial differential equation $u_t +uu_x = mu u_{xx}$, Comm. Pure Appl. Math. 3 (1950), 201-230. https://doi.org/10.1002/cpa.3160030302
    • L. V. Kantorovich and G. Sh. Rubinshtein, On a functional space and certain extremum problems, Dokl. Akad. Nauk SSSR 115, no. 6 (1957), 1058-1061.
    • S. C. Kleene, Representation of events in nerve sets and finite automata, in: Automata Studies, J. McCarthy and C. Shannon (eds), Princeton...
    • V. N. Kolokoltsov and V. P. Maslov, The general form of the endomorphisms in the space of continuous functions with values in a numerical...
    • V. N. Kolokoltsov and V. P. Maslov, Idempotent analysis and its applications, Kluwer Publishing House, 1997. https://doi.org/10.1007/978-94-015-8901-7
    • G. L. Litvinov, Maslov dequantization, idempotent and tropical mathematics: A brief introduction, Journal of Mathematical Sciences 140, no....
    • G. L. Litvinov, V. P. Maslov and G. B. Shpiz, Idempotent (asymptotic) analysis and the representation theory, in: Asymptotic Combinatorics...
    • L. L. Oridoroga, Layer-by-layer infinite iterations of some metrizable functors, Moscow Univ. Math. Bull. 45, no. 1 (1990), 34-36.
    • A. Peczynski, Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions,...
    • A. A. Zaitov, Geometrical and topological properties of a subspace $P_f(X)$ of probability measures, Russ Math. 63, no. 10 (2019), 24-32....
    • A. A. Zaitov and A. Ya. Ishmetov, Homotopy properties of the space $I_f(X)$ of idempotent probability measures, Math. Notes 106, no. 3-4 (2019),...
    • A. A. Zaitov and Kh. F. Kholturaev, On interrelation of the functors P of probability measures and I of idempotent probability measures, Uzbek...
    • M. M Zarichnyi, Spaces and maps of idempotent measures, Izv. Math. 74, no. 3 (2010), 481-499. https://doi.org/10.1070/IM2010v074n03ABEH002495

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno