Ir al contenido

Documat


Characterization of Wireless Data Transmission over Wi-Fi in a Biomechanical Information Processing System

  • Callejas-Cuervo, Mauro [1] ; Vélez-Guerrero, Manuel Andrés [1] ; Alarcón-Aldana, Andrea Catherine [1]
    1. [1] Universidad Pedagógica y Tecnológica de Colombia

      Universidad Pedagógica y Tecnológica de Colombia

      Colombia

  • Localización: Revista Facultad de Ingeniería, ISSN-e 2357-5328, ISSN 0121-1129, Vol. 29, Nº. 54, 2020
  • Idioma: inglés
  • DOI: 10.19053/01211129.v29.n54.2020.10228
  • Títulos paralelos:
    • Caracterización de la transmisión inalámbrica de datos a través de Wi-Fi en un sistema de procesamiento de información biomecánica
  • Enlaces
  • Resumen
    • español

      Este artículo presenta una caracterización de la transmisión inalámbrica de señales biomecánicas en un sistema embebido, donde se utiliza un protocolo TCP en una red de comunicaciones IEEE 802.11 (Wi-Fi). El sistema embebido en estudio, denominado Imocap, permite la recogida, análisis y transmisión de señales biomecánicas en tiempo real para diversas aplicaciones, entre las que destacan el análisis del movimiento de las extremidades inferiores y superiores y la activación de diversos sistemas de control. Para este fin, Imocap está equipado con un módulo transceptor Wi-Fi (ESP8266) y varios periféricos de entrada y salida. El desempeño de la comunicación inalámbrica de Imocap, expuesto en este trabajo, fue analizado a través de diferentes pruebas en condiciones diversas como en interiores, exteriores y en presencia de interferencia, ruido y otras redes inalámbricas. Los diferentes protocolos de prueba realizados dan como resultado que el sistema Imocap: 1) tiene un alcance efectivo máximo de 45,6 m cuando está en modo Access Point; 2) tiene un alcance efectivo máximo de 44,3 m cuando está en modo Station. En interior y en las mismas condiciones, el sistema Imocap: 3) tiene un alcance efectivo máximo de 81,25 m2, ya sea en modo Punto de Acceso o en modo Estación. Los resultados mostraron que la transmisión de información biomecánica a través de Wi-Fi utilizando el protocolo TCP es eficiente y robusta, tanto en interiores como en exteriores, incluso en entornos de interferencia de radiofrecuencia. Se destaca el uso de este protocolo ya que su uso permite que la transmisión de paquetes se realice de forma controlada, permitiendo el manejo y recuperación de errores. De esta manera, es posible llevar a cabo una comunicación inalámbrica eficiente y robusta a través de dispositivos embebidos y portátiles, centrándose principalmente en áreas como la medicina, la telemedicina y la telerehabilitación.

    • English

      This paper presents a characterization of the wireless transmission of biomechanical signals in an embedded system, where a TCP protocol is used in an IEEE 802.11 communications network (Wi-Fi). The embedded system under study, called Imocap, allows the collection, analysis and transmission of biomechanical signals in real-time for various applications, among which the analysis of the movement of the lower and upper extremities and the operation of various control systems stand out. To accomplish this, Imocap is equipped with a Wi-Fi transceiver module (ESP8266) and various input and output peripherals. The wireless communication performance of Imocap, exposed in this paper, was analyzed through different tests in miscellaneous conditions like indoors, outdoors and in the presence of interference, noise and other wireless networks. The different test protocols conducted result in the Imocap system: 1) has a maximum effective range of 45.6 m when in Access Point mode; 2) has a maximum effective range of 44.3 m when in Station mode. In indoors and under the same conditions, the Imocap system: 3) has a maximum effective range of 81.25 m2, either Access Point or Station mode. The results showed that the transmission of biomechanical information through Wi-Fi using the TCP protocol is efficient and robust, both indoors and outdoors, even in environments of radio frequency interference. The use of this protocol is emphasized since its use allows the transmission of packages to be carried out in a controlled manner, allowing the error handling and recovery. In this way, it is possible to carry out efficient and robust wireless communication through embedded and portable devices, focusing mainly on areas such as medicine, telemedicine and telerehabilitation.

  • Referencias bibliográficas
    • [1] X. Gao, L. Lin, T. Lan, and X. Gan, "Design and Research on the Chinese Medicine Health Management System Based on the Wireless Sensor...
    • [2] X. Zhang, C. Xu, Y. Zhang, and C. Jin, “Efficient Integrity Verification Scheme for Medical Data Records in Cloud-Assisted Wireless Medical...
    • [3] S. Das, S. Barani, S. Wagh, and S.-S. Sonavane, “Extending lifetime of wireless sensor networks using multi-sensor data fusion,” Sadhana,...
    • [4] T.-Y. Shi, J. Li, X.-C. Jia, W. Bai, Z.-Y. Wang, and D. Zhou, “Low-latency data gathering with reliability guaranteeing in heterogeneous...
    • [5] M. Wang, X. Wang, L. Yang, X. Deng, and L. Yi, "Multi-sensor fusion based intelligent sensor relocation for health and safety monitoring...
    • [6] E. Bassey, and P. Sallis, "Integration of Microfluidic Sensors for Interactive Remote Wireless Data Transmission," IFMBE Proceedings,...
    • [7] K. Rao, and K. Supriya, "Design and Development of IoT Based Intravenous Infusion System," Lecture Notes in Electrical Engineering,...
    • [8] B. Kurian, and R. Liyanapathirana, "Machine Learning Techniques for Structural Health Monitoring," in Proceedings of the 13th...
    • [9] B. Adamová, P. Kutilek, O. Cakrt, Z. Svoboda, S. Viteckova, and P. Smrcka, “Quantifying postural stability of patients with cerebellar...
    • [10] N. Xie, and P.-Y. Mok, “Investigation on human body movements and the resulting body measurement variations,” Advances in Physical Ergonomics...
    • [11] A.-K. Seifert, M.-G. Amin, and A.-M. Zoubir, “New analysis of radar micro-Doppler gait signatures for rehabilitation and assisted living”,...
    • [12] S. Transue, P. Nguyen, T. Vu, and M.-H. Choi, “Thermal-Depth Fusion for Occluded Body Skeletal Posture Estimation,” in IEEE International...
    • [13] S. Zihajehzadeh, and E.-J. Park, “A Novel Biomechanical Model-Aided IMU/UWB Fusion for Magnetometer-Free Lower Body Motion Capture,”...
    • [14] L. Malasinghe, N. Ramzan, and K. Dahal, "Remote patient monitoring: a comprehensive study," Journal of Ambient Intelligence and...
    • [15] C. Abreu, F. Miranda, and P.-M. Mendes, “Smart context-aware QoS-based admission control for biomedical wireless sensor networks,” Journal...
    • [16] I. Bocicor, M. Dascalu, A. Gaczowska, S. Hostiuc, A. Moldoveanu, A. Molina, A.-J. Molnar, I. Negoi, and V. Racovita “Wireless sensor...
    • [17] B. Iancu, R. Kovacs, V. Dadarlat, and A. Peculea, “Interconnecting heterogeneous non-smart medical devices using a wireless sensor networks...
    • [18] N. Saleh, A. Kassem, and A.-M. Haidar, “Energy-efficient architecture for wireless sensor networks in healthcare applications,” IEEE...
    • [19] G. Abdul-Salaam, A.-H. Abdullah, and M.-H. Anisi, “Energy-Efficient Data Reporting for Navigation in Position-Free Hybrid Wireless Sensor...
    • [20] R. Talmale, M. Bhat, and N. Thakare, "Efficient Energy Attentive and Fault Recognition Mechanism in Distributed Wireless Sensor Networks:...
    • [21] S. Sharma, J. Singh, R. Kumar, and A. Singh, "Throughput-save ratio optimization in wireless powered communication systems,"...
    • [22] E. Casilari-Pérez, and F. García-Lagos, "A comprehensive study on the use of artificial neural networks in wearable fall detection...
    • [23] H. Son, M. Nguyen, H. Vo, and T. Nguyen, "Toward a Privacy Protection Based on Access Control Model in Hybrid Cloud for Healthcare...
    • [24] M. Muzammal, R. Talat, A. Sodhro, and S. Pirbhulal, "A multi-sensor data fusion enabled ensemble approach for medical data from body...
    • [25] J. Qi, P. Yang, L. Newcombe, X. Peng, Y. Yang, and Z. Zhao, "An overview of data fusion techniques for Internet of Things enabled...
    • [26] E. Valchinov, K. Rotas, A. Antoniou, V. Syrimpeis, and N. Pallikarakis, "Wearable System for Early Diagnosis and Follow Up of Spine...
    • [27] S. Baskar, P. Mohamed Shakeel, R. Kumar, M. Burhanuddin, and R. Sampath, "A dynamic and interoperable communication framework for...
    • [28] A. Shamsul Arefin, K. Nahiyan, and M. Rabbani, "The Basics of Healthcare IoT: Data Acquisition, Medical Devices, Instrumentations...
    • [29] A. Ahmad, M. F. Roslan, and A. Amira, “Throughput, latency and cost comparisons of microcontroller-based implementations of wireless...
    • [30] W. Wang, A. X. Liu, M. Shahzad, K. Ling, and S. Lu, “Device-Free Human Activity Recognition Using Commercial WiFi Devices,” IEEE Journal...
    • [31] A. Yilmaz, and A. Gupta, “Indoor positioning using visual and inertial sensors,” in IEEE Sensors Conference (SENSORS), Orlando, USA,...
    • [32] Y. Gu, J. Zhan, Y. Ji, J. Li, F. Ren, and S. Gao, “MoSense: An RF-Based Motion Detection System via Off-the-Shelf WiFi Devices,” IEEE...
    • [33] M. Kotaru, A. Anemogiannis, S. Joseph, and S. Katti, “Demo: Position tracking for virtual reality using commodity WiFi,” in Annual International...
    • [34] C. Prasad, and P. Bojja, "A reliable, energy aware and stable topology for bio-sensors in health-care applications," Journal...
    • [35] M. Callejas-Cuervo, M. Vélez-Guerrero, and A. Alarcón-Aldana, Estimadores No Lineales: Aplicación del Filtro de Kalman a Señales Biomecánicas....
    • [36] S. Majumder, M. Rahman, M. Islam, and D. Ghosh, "Design and Implementation of a Wireless Health Monitoring System for Remotely Located...
    • [37] D. Bora, N. Kumar, and R. Dutta, "Implementation of wireless MEMS sensor network for detection of gait events," IET Wireless...
    • [38] L. Fernandez, L. Perez, J. Hernandez, and G.-J. Rodriguez, "Biomechanical Signal Analysis for Evaluation of Gait in Parkinson's...
    • [39] F.-A. Mota, V.-H. Biajo, H.-O. Mota, and F.-H. Vasconcelos, “A wireless sensor network for the biomechanical analysis of the gait,” in...
    • [40] T. Ahmed, and H. Ahmad, "Device free human gesture recognition using Wi-Fi CSI: A survey," Engineering Applications of Artificial...
    • [41] Y. Li, Y. Zhuang, H. Lan, Q. Zhou, X. Niu, and N. El-Sheimy, “A Hybrid WiFi/magnetic matching/PDR approach for indoor navigation with...
    • [42] M. Merkepci, M. Ozyazici, and N. Dogru, "Photoplethysmography based instant remote monitoring of non-invasive blood pressure and...
    • [43] S.-F. Kedar, Abdullah, F. Sudhindra, S.-J. Annarao, R.-M. Vani, and B.-S. Motgi, “Development of Zigbee based tele operated multipurpose...
    • [44] D.-E. Bolanakis, “Work in progress: Educating engineers in MEMS sensors; A case study in wireless barometers,” in IEEE Global Engineering...
    • [45] A. Sahdom, "Application of Micro Electro-Mechanical Sensors (MEMS) Devices with Wifi Connectivity and Cloud Data Solution for Industrial...
    • [46] C. Real-Ehrlich, and J. Blankenbach, "Indoor localization for pedestrians with real-time capability using multi-sensor smartphones,"...
    • [47] A. Murty, M. Satyanarayana, and I. Devi, "Compressor Health Monitoring using IOT," International Journal of Mechanical and Production...
    • [48] Ai-Thinker, ESP-12F WiFi Module, 2017. Available: https://www.elecrow.com/download/ESP-12F.pdf.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno