Ir al contenido

Documat


Local Distance-Based Generalized Linear Models using the dbstats package for R

  • Boj del Val, Eva [1] ; Delicado, Pedro [2] ; Fortiana Gregori, Josep [1] ; Esteve, Anna [3] ; Caballé Mestres, Adrià [2]
    1. [1] Universitat de Barcelona

      Universitat de Barcelona

      Barcelona, España

    2. [2] Universitat Politècnica de Catalunya

      Universitat Politècnica de Catalunya

      Barcelona, España

    3. [3] Centre d'Estudis Epidemiològics sobre les ITS i Sida de Catalunya (CEEISCAT) (España)
  • Localización: Documentos de trabajo ( XREAP ), Nº. 11, 2012
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper introduces local distance-based generalized linear models. These models extend (weighted) distance-based linear models firstly with the generalized linear model concept, then by localizing. Distances between individuals are the only predictor information needed to fit these models. Therefore they are applicable to mixed (qualitative and quantitative) explanatory variables or when the regressor is of functional type. Models can be fitted and analysed with the R package dbstats, which implements several distancebased prediction methods.

  • Referencias bibliográficas
    • Andrews, D. F. and A. M. Herzberg (1985). Data. A collection of problems from many fields for the student and research worker. New York, NY,...
    • Boj, E., A. Caball´e, P. Delicado, and J. Fortiana (2012). dbstats: Distance-based statistics (dbstats). R package version 1.0.2.
    • Boj, E., M. M. Claramunt, and J. Fortiana (2007). Selection of predictors in distancebased regression. Communications in Statistics A. Theory...
    • Boj, E., M. M. Claramunt, A. Gran´e, and J. Fortiana (2007). Implementing pls for distance-based regression: computational issues. Computational...
    • Boj, E., P. Delicado, and J. Fortiana (2010). Local linear functional regression based on weighted distance-based regression. Computational...
    • Bowman, A. and A. Azzalini (1997). Applied Smoothing Techniques for Data Analysis. Oxford: Oxford University Press.
    • Brenchley, J. M., U. H¨orchner, and J. H. Kalivas (1997). Wavelength selection characterization for nir spectra. Applied Spectroscopy 51,...
    • Cuadras, C. and C. Arenas (1990). A distance-based regression model for prediction with mixed data. Communications in Statistics A. Theory...
    • Cuadras, C. M. (1989). Distance analysis in discrimination and classification using both continuous and categorical variables. In Y. Dodge...
    • Cuadras, C. M., C. Arenas, and J. Fortiana (1996). Some computational aspects of a distance-based model for prediction. Communications in...
    • Esteve, A., E. Boj, and J. Fortiana (2009). Interaction terms in distance-based regression. Communications in Statistics A. Theory and Methods...
    • Faraway, J. (2012). faraway: Functions and datasets for books by Julian Faraway. R package version 1.0.5.
    • Febrero-Bande, M. and M. Oviedo (2012). fda.usc: Functional Data Analysis and Utilities for Statistical Computing (fda.usc). R package version...
    • Ferraty, F. and P. Vieu (2006a). Non parametric functional data analysis. Theory and practice. Springer.
    • Ferraty, F. and P. Vieu (2006b). Reference manual for implementing NonParametric Functional Data Analysis (NPFDA). Companion manual of the...
    • Gower, J. C. (1971). A general coefficient of similarity and some of its properties. Biometrics 27, 857–874.
    • Green, P. J. (1984). Iteratively reweighted least squares for maximum likelihood estimation, and some robust and resistant alternatives. Journal...
    • Hallin, M. and J. F. Ingenbleek (1983). The Swedish automobile portfolio in 1977. a statistical study. Skandinavisk Aktuarietidskrift (Scandinavian...
    • Hastie, T., R. Tibshirani, and J. Friedman (2009). The Elements of Statistical Learning. Data Mining, Inference, and Prediction (2nd ed.)....
    • Kalivas, J. H. (1997). Two data sets of near infrared spectra. Chemometrics and Intelligent Laboratory Systems 37, 255–259.
    • Loader, C. (1999). Local regression and likelihood. New York: Springer.
    • Maechler, M. (2012). cluster: Cluster Analysis Extended Rousseeuw et al. R package version 1.14.2.
    • McCullagh, P. and J. A. Nelder (1989). Generalized Linear Models (2nd ed). London: Chapman and Hall.
    • Meyer, D. and C. Buchta (2012). proxy: Distance and Similarity Measures. R package version 0.4-7.
    • Ramsay, J. O. and B. W. Silverman (2005). Functional Data Analysis (2nd ed). New York: Springer.
    • Rao, C. R. (1973). Linear Statistical Inference and its Applications. New York, NY, USA: John Wiley & Sons.
    • Stewart, G. W. (1993). On the early history of the singular values decomposition. SIAM Review 35, 551–566.
    • Street, J. O., R. J. Carroll, and D. Ruppert (1988). A note on computing robust regression estimates via iteratively reweighted least squares....
    • Wasserman, L. (2006). All of Nonparametric Statistics. New York: Springer.
    • Wood, S. N. (2006). Generalized Additive models: An Introduction with R. Boca Raton, FL, USA: Chapman & Hall/CRC.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno