[1] Barrico C., and Antunes C.H. (2006). Robustness analysis
in evolutionary multiobjective optimization - with a case
study in electrical...
[2] Barrico C., and Antunes C.H. (2006). Robustness analysis
in multiobjective optimization using a degree of robustness
concept. In IEEE...
[3] Barrico C., and Antunes C.H. (2006). A new approach to
robustness analysis in multi-objective optimization. Proceedings
of the 7th International...
[4] Ben-Tal A., El Ghaoui L., and Nemirovski A. (2009). Robust
Optimization, Princeton University Press, Princeton.
[5] Ben-Tal A., and Nemirovski A. (2000). Robust solutions of
linear programming problems contaminated with uncertain
data, Math. Program.,...
[6] Ben-Tal A., and Nemirovski A. (1998). Robust convex
optimization, Math. Oper. Res., 23(4), 769–805.
[7] Bertsimas D., and Sim, M. (2004). The price of robustness,
Oper. Res., 52(1), 35–53.
[8] Branke J. (1998). Creating robust solutions by means of
evolutionary algorithms. In E.A. Eiben, T. B¨ack, M. Schenauer,
and H.-P. Schwefel,...
[9] Deb K., and Gupta H. (2006). Introducing robustness in
multiobjective optimization, Evol. Comput., 14, 463–494.
[10] Ehrgott M. (2005). Multicriteria Optimization, Springer, New
York.
[11] Ehrgott M., Ide J., and Sch¨obel A. (2014). Minmax robustness
for multi-objective optimization problems, European J. Oper.
Res., 239(1),...
[12] Eichfelder G., and Pilecka, M. (2016). Set approach for set
optimization with variable ordering structures Part I: Set
relations and...
[13] Eichfelder G., and Pilecka M. (2016). Set approach for
set optimization with variable ordering structures Part II:
Scalarization approaches,...
[14] El Ghaoui L., and Lebret H. (1997). Robust solutions to
least-squares problems with uncertain data, SIAM J. Matrix
Anal. Appl., 18, 1034–1064.
[15] Erfani T., and Utyuzhnikov S. (2012). Control of robust design
in multiobjective optimization under uncertainties, Struct.
Multidiscip....
[16] Fischetti M., Salvagnin D., and Zanette A. (2009). Fast
approaches to improve the robustness of a railway timetable,
Transportation Sci.,...
[17] Gass S., and Saaty T. (1995). The computational algorithm
for the parametric objective function, Naval Res. Logistics
Quarterly, 2, 39–45.
[18] Gerstewitz (Tammer) Chr. (1983). Nichtkonvexe Dualit¨at in der
Vektoroptimierung, Wiss. Zeitschr. TH Leuna-Merseburg, 25,
357–364.
[19] Gerth (Tammer) Chr., and Weidner P. (1990). Nonconvex
separation theorems and some applications in vector
optimization, J. Optim. Theory...
[20] G¨opfert A., Riahi H., Tammer Chr., and Z˘alinescu C. (2003).
Variational Methods in Partially Ordered Spaces, CMS Books
in Mathematics,...
[21] Gunawan S., and Azarm S. (2005). Multi-objective robust
optimization using a sensitivity region concept, Struct.
Multidiscip. Optim.,...
[22] Guti´errez C., Novo V., R´odenas-Pedregosa J.L., and Tanaka
T. (2016). Nonconvex separation functional in linear spaces
with applications...
[23] Haimes Y., Lasdon L.S., and Wismer D.A. (1971). On a
bicriterion formulation of the problems of integrated system
identification and...
[24] Hughes E.J. (2001). Evolutionary multi-objective ranking with
uncertainty and noise. Proceedings of the First International
Conference...
[25] Iancu D.A., and Trichakis N. (2014). Pareto efficiency in robust
optimization, Manag. Sci., 60, 130–147.
[26] Ide J., and K¨obis E. (2014). Concepts of efficiency for uncertain
multi-objective optimization problems based on set order
relations,...
[27] Ide J., K¨obis E., Kuroiwa D., Sch¨obel A., and Tammer
Chr. (2014). The relationship between multicriteria robustness
concepts and set-valued...
[28] Jahn J. (2011). Vector Optimization - Introduction, Theory, and
Extensions, Springer, Berlin, Heidelberg.
[29] Klamroth K., K¨obis E., Sch¨obel A., and Tammer Chr. (2013).
A unified approach for different concepts of robustness and
stochastic programming...
[30] Klamroth K., K¨obis E., Sch¨obel A., and Tammer Chr. (2017). A
unified approach to uncertain optimization, European J. Oper.
Res., 260,...
[31] K¨obis E., and K¨obis M.A. (2016). Treatment of set order
relations by means of a nonlinear scalarization functional: A
full characterization,...
[32] K¨obis E., and Tammer Chr. (2017). Robust vector optimization
with a variable domination structure, Carpathian J. Math.,
33(3), 343-351.
[33] Kouvelis P., and Sayin S. (2006). Algorithm robust for the
bicriteria discrete optimization problem, Ann. Oper. Res., 147,
71–85.
[34] Krasnosel’ski˘ı M.A. (1964). Positive solutions of operator
equations. Translated from the Russian by Richard E. Flaherty;
edited by...
[35] Kuroiwa D. (1999). Some duality theorems of set-valued
optimization with natural criteria. In Proceedings of the
International Conference...
[36] Kuroiwa D. (1997). The natural criteria in set-valued
optimization, S¯urikaisekikenky¯usho K¯oky¯uroku, 1031:85–90,
Research on nonlinear...
[37] Kuroiwa D., and Lee G. M. (2012). On robust multiobjective
optimization, Vietnam J. Math., 40(2&3), 305–317
[38] Kuroiwa D., and Lee G. M. (2014). On robust convex
multiobjective optimization, J. Nonlinear Convex Anal., 15,
1125–1136.
[39] Kuroiwa D., Tanaka T., and Duc Ha T.X. (1997). On
cone convexity of set-valued maps, Nonlinear Anal., 30(3),
1487–1496.
[40] Li M., Azarm S., and Aute V. (2005). A multi-objective
genetic algorithm for robust design optimization. In Proceedings
of the Genetic...
[41] Pascoletti A., and Serafini P. (1984). Scalarizing vector
optimization problems, J. Optim. Theory Appl., 42, 499–524.
[42] Rubinov A.M. (1977). Sublinear operators and their
applications, Uspehi Mat. Nauk, 32(4(196)), 113–174.