Ir al contenido

Documat


Robust approaches to uncertain optimization

  • Autores: Elisbeth köbis
  • Localización: BEIO, Boletín de Estadística e Investigación Operativa, ISSN 1889-3805, Vol. 33, Nº. 3, 2017, págs. 224-257
  • Idioma: inglés
  • Enlaces
  • Referencias bibliográficas
    • [1] Barrico C., and Antunes C.H. (2006). Robustness analysis in evolutionary multiobjective optimization - with a case study in electrical...
    • [2] Barrico C., and Antunes C.H. (2006). Robustness analysis in multiobjective optimization using a degree of robustness concept. In IEEE...
    • [3] Barrico C., and Antunes C.H. (2006). A new approach to robustness analysis in multi-objective optimization. Proceedings of the 7th International...
    • [4] Ben-Tal A., El Ghaoui L., and Nemirovski A. (2009). Robust Optimization, Princeton University Press, Princeton.
    • [5] Ben-Tal A., and Nemirovski A. (2000). Robust solutions of linear programming problems contaminated with uncertain data, Math. Program.,...
    • [6] Ben-Tal A., and Nemirovski A. (1998). Robust convex optimization, Math. Oper. Res., 23(4), 769–805.
    • [7] Bertsimas D., and Sim, M. (2004). The price of robustness, Oper. Res., 52(1), 35–53.
    • [8] Branke J. (1998). Creating robust solutions by means of evolutionary algorithms. In E.A. Eiben, T. B¨ack, M. Schenauer, and H.-P. Schwefel,...
    • [9] Deb K., and Gupta H. (2006). Introducing robustness in multiobjective optimization, Evol. Comput., 14, 463–494.
    • [10] Ehrgott M. (2005). Multicriteria Optimization, Springer, New York.
    • [11] Ehrgott M., Ide J., and Sch¨obel A. (2014). Minmax robustness for multi-objective optimization problems, European J. Oper. Res., 239(1),...
    • [12] Eichfelder G., and Pilecka, M. (2016). Set approach for set optimization with variable ordering structures Part I: Set relations and...
    • [13] Eichfelder G., and Pilecka M. (2016). Set approach for set optimization with variable ordering structures Part II: Scalarization approaches,...
    • [14] El Ghaoui L., and Lebret H. (1997). Robust solutions to least-squares problems with uncertain data, SIAM J. Matrix Anal. Appl., 18, 1034–1064.
    • [15] Erfani T., and Utyuzhnikov S. (2012). Control of robust design in multiobjective optimization under uncertainties, Struct. Multidiscip....
    • [16] Fischetti M., Salvagnin D., and Zanette A. (2009). Fast approaches to improve the robustness of a railway timetable, Transportation Sci.,...
    • [17] Gass S., and Saaty T. (1995). The computational algorithm for the parametric objective function, Naval Res. Logistics Quarterly, 2, 39–45.
    • [18] Gerstewitz (Tammer) Chr. (1983). Nichtkonvexe Dualit¨at in der Vektoroptimierung, Wiss. Zeitschr. TH Leuna-Merseburg, 25, 357–364.
    • [19] Gerth (Tammer) Chr., and Weidner P. (1990). Nonconvex separation theorems and some applications in vector optimization, J. Optim. Theory...
    • [20] G¨opfert A., Riahi H., Tammer Chr., and Z˘alinescu C. (2003). Variational Methods in Partially Ordered Spaces, CMS Books in Mathematics,...
    • [21] Gunawan S., and Azarm S. (2005). Multi-objective robust optimization using a sensitivity region concept, Struct. Multidiscip. Optim.,...
    • [22] Guti´errez C., Novo V., R´odenas-Pedregosa J.L., and Tanaka T. (2016). Nonconvex separation functional in linear spaces with applications...
    • [23] Haimes Y., Lasdon L.S., and Wismer D.A. (1971). On a bicriterion formulation of the problems of integrated system identification and...
    • [24] Hughes E.J. (2001). Evolutionary multi-objective ranking with uncertainty and noise. Proceedings of the First International Conference...
    • [25] Iancu D.A., and Trichakis N. (2014). Pareto efficiency in robust optimization, Manag. Sci., 60, 130–147.
    • [26] Ide J., and K¨obis E. (2014). Concepts of efficiency for uncertain multi-objective optimization problems based on set order relations,...
    • [27] Ide J., K¨obis E., Kuroiwa D., Sch¨obel A., and Tammer Chr. (2014). The relationship between multicriteria robustness concepts and set-valued...
    • [28] Jahn J. (2011). Vector Optimization - Introduction, Theory, and Extensions, Springer, Berlin, Heidelberg.
    • [29] Klamroth K., K¨obis E., Sch¨obel A., and Tammer Chr. (2013). A unified approach for different concepts of robustness and stochastic programming...
    • [30] Klamroth K., K¨obis E., Sch¨obel A., and Tammer Chr. (2017). A unified approach to uncertain optimization, European J. Oper. Res., 260,...
    • [31] K¨obis E., and K¨obis M.A. (2016). Treatment of set order relations by means of a nonlinear scalarization functional: A full characterization,...
    • [32] K¨obis E., and Tammer Chr. (2017). Robust vector optimization with a variable domination structure, Carpathian J. Math., 33(3), 343-351.
    • [33] Kouvelis P., and Sayin S. (2006). Algorithm robust for the bicriteria discrete optimization problem, Ann. Oper. Res., 147, 71–85.
    • [34] Krasnosel’ski˘ı M.A. (1964). Positive solutions of operator equations. Translated from the Russian by Richard E. Flaherty; edited by...
    • [35] Kuroiwa D. (1999). Some duality theorems of set-valued optimization with natural criteria. In Proceedings of the International Conference...
    • [36] Kuroiwa D. (1997). The natural criteria in set-valued optimization, S¯urikaisekikenky¯usho K¯oky¯uroku, 1031:85–90, Research on nonlinear...
    • [37] Kuroiwa D., and Lee G. M. (2012). On robust multiobjective optimization, Vietnam J. Math., 40(2&3), 305–317
    • [38] Kuroiwa D., and Lee G. M. (2014). On robust convex multiobjective optimization, J. Nonlinear Convex Anal., 15, 1125–1136.
    • [39] Kuroiwa D., Tanaka T., and Duc Ha T.X. (1997). On cone convexity of set-valued maps, Nonlinear Anal., 30(3), 1487–1496.
    • [40] Li M., Azarm S., and Aute V. (2005). A multi-objective genetic algorithm for robust design optimization. In Proceedings of the Genetic...
    • [41] Pascoletti A., and Serafini P. (1984). Scalarizing vector optimization problems, J. Optim. Theory Appl., 42, 499–524.
    • [42] Rubinov A.M. (1977). Sublinear operators and their applications, Uspehi Mat. Nauk, 32(4(196)), 113–174.
    • [43] Sayin S., and Kouvelis P. (2005). The multiobjective discrete optimization problem: A weighted min-max two-stage optimization approach...
    • [44] Sch¨obel A. (2014). Generalized light robustness and the trade-off between robustness and nominal quality, Math. Methods Oper. Res.,...
    • [45] Soyster A.L. (1973). Convex programming with set-inclusive constraints and applications to inexact linear programming, Oper. Res., 21,...
    • [46] Steuer R.E., and Choo E.U. (1983). An interactive weighted Tchebycheff procedure for multiple objective programming, Math. Program.,...
    • [47] Teich J. (2001). Pareto-front exploration with uncertain objectives. In Proceedings of the First International Conference on Evolutionary...
    • [48] Weidner P. (1990). Ein Trennungskonzept und seine Anwendung auf Vektoroptimierungsverfahren. Habilitation thesis, Martin-Luther-University...
    • [49] Wierzbicki A.P. (1986). On the completeness and constructiveness of parametric characterizations to vector optimization problems, OR...
    • [50] Winkler K. (2003). Aspekte Mehrkriterieller Optimierung C(T)-wertiger Abbildungen. Dissertation thesis, Martin-Luther-University Halle-Wittenberg.
    • [51] Yan Y, Meng Q., Wang S., and Guo X. (2012). Robust optimization model of schedule design for a fixed bus route, Transp. Res. Part C:...
    • [52] Zadeh L. (1963). Optimality and non-scalar-valued performance criteria, IEEE Trans. Automat. Control, 8, 59–60.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno