Ir al contenido

Documat


Geometry teaching experience in virtual reality with NeoTrie VR

  • Diego Cangas [1] ; Grażyna MORGA [2] ; José Luis Rodríguez Blancas Árbol académico
    1. [1] Universidad de Almería

      Universidad de Almería

      Almería, España

    2. [2] Zespół Szkolno-Przedszkolny w Żernicy, Poland
  • Localización: Psychology, Society & Education, ISSN 1989-709X, ISSN-e 2171-2085, Vol. 11, Nº. 3, 2019, págs. 355-366
  • Idioma: inglés
  • DOI: 10.25115/psye.v11i3.2270
  • Enlaces
  • Resumen
    • español

      Se presentan las posibilidades que ofrece el nuevo software NeoTrie VR (o Neotrie) en la enseñanza de la Geometría, a partir de la experiencia llevada a cabo con alumnado de 11 a 14 años de edad, en un centro de Enseñanza Primaria en Żernica (Polonia). El uso de Neotrie ha facilitado que los participantes superen algunos de los obstáculos con los que normalmente se encuentran en el aprendizaje de la Geometría. Además, los estudiantes participantes resuelven problemas geométricos con más rapidez, en relación a otros cursos anteriores, especialmente aquellos problemas que requieren una mayor visión espacial y entrañan mayor grado de dificultad. Desde que se utiliza dicho programa, el alumnado está más activo y abierto a cooperar, a participar en la formulación de conclusiones. Neotrie resulta ser una herramienta útil para enseñar Geometría, ayuda a que el alumnado organice mejor sus conocimientos de Geometría de forma lúdica, a que mejore su razonamiento espacial y potencie su creatividad.

    • English

      The possibilities of using the new software of virtual reality NeoTrie VR (or Neotrie) to teach geometry to children aged 11- 14 years old are presented. This software is tested for the first time as a part of math lessons at a School in Żernica (Poland). The use of Neotrie has made it easier to eliminate some of the problems faced by the pupils in the early stages of geometry learning. Moreover, the participating students solve geometric tasks more quickly, compared with previous years, especially those that require spatial imagination and those with a higher degree of difficulty. Since the program has been implemented, pupils are more active and prone to cooperation, and to formulate conclusions. Neotrie turns out to be a useful tool for teaching Geometry, it helps students to better organize their geometric knowledge in a ludic way, to increase their spatial reasoning and creativity.

  • Referencias bibliográficas
    • Bartolini-Bussi, M., & Baccaglini-Frank, A. (2015). Geometry in early years: sowing seeds for a mathematical definition of squares and...
    • Battista, M. T. (2007). The development of geometric and spatial thinking. In: F. Lester (Ed.), Second handbook of research on mathematics...
    • Bruce, C., & Hawes, Z. (2015). The role of 2D and 3D mental rotations in mathematics for young children: What is it? Why does it matter?...
    • Cangas, D., Crespo, D., Rodríguez, J.L., & Zarauz (2019), NeoTrie VR: nueva geometría en realidad virtual, Pi-InnovaMath, Num. 2, 1–8.
    • Clements, D.H., Natasi, B.K., & Swaminathan, S. (1993). Young children and computers: crossroads and directions from research. Young Children...
    • Clements, D., & Sarama, J. (2004). Engaging Young children in mathematics: standards for early childhood mathematics education. Mahwah:...
    • Clements, D. H., & Sarama, J. (2011). Early childhood teacher education: the case of geometry. Journal of Mathematics Teacher Education,...
    • Dindyal J. (2015). Geometry in the early years: a commentary. ZDM Mathematics Education 47 (3), 519–529.
    • Erhlich, S. B., Levine, S., & Goldin-Meadow, S. (2006). The importance of gesture in children’s spatial reasoning. Developmental Psychology,...
    • Guay, R. B., & McDaniel, E. D. (1977). The relationship between mathematics achievement and spatial abilities among elementary school...
    • Hoffer, A. (1981). Geometry is more than proof. Mathematics Teacher, 74, 11–18.
    • Jiménez, D., Rodríguez, J.L., (2014). Geometría flexible con Polifieltros 3D, Actas del XIV Congreso de Enseñanza y Aprendizaje de las Matemáticas,...
    • Kaur, H. (2015). Two aspects of young children’s thinking about different types of dynamic triangles: prototypicality and inclusion. ZDM Mathematics...
    • Kotsopoulos, D., Cordy, M., & Langemeyer, M. (2015). Children’s understanding of large-scale mapping tasks: an analysis of talk, drawings,...
    • Moss, J., Hawes, Z., Naqvi, S., & Caswell, B. (2015). Adapting Japanese Lesson Study to enhance the teaching and learning of geometry...
    • National Research Council (2006). Learning to think spatially: GIS as a support system in the K-12 curriculum. Washington, DC: National Academy...
    • Ng, O., & Sinclair, N. (2015). Young children reasoning about symmetry in a dynamic geometry environment. ZDM Mathematics Education, 47(3),...
    • Soury-Lavergne, S., & Maschietto, M. (2015). Articulation of spatial and geometrical knowledge in problem solving with technology at primary...
    • Timmerman, H., Toll, S., & Van Luit, J. (2017). The relation between math self-concept, test and math anxiety, achievement motivation...
    • Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: aligning over fifty years of cumulative psychological...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno