Ir al contenido

Documat


A new generalization of Wilson’s functional equation

  • Dimou, Hajira [1] ; Chahbi, Abdellatif [1] ; Kabbaj, Samir [1]
    1. [1] Université Ibn-Tofail

      Université Ibn-Tofail

      Kenitra, Marruecos

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 38, Nº. 5, 2019, págs. 943-954
  • Idioma: inglés
  • DOI: 10.22199/issn.0717-6279-2019-05-0060
  • Enlaces
  • Resumen
    • Let G be a group, let σ : G → G be an involutive automorphism and let χ1, χ2 : G → C∗ be two characters of G such that χ2(xσ(x)) = 1 for all x ∈ G. The aim of this paper is to describe the solutions f, g : G → C of the functional equation χ1(y)f (xy) + χ2(y)f (σ(y)x) = 2f (x)g(y), x,y ∈ G, in terms of characters and additive functions.

  • Referencias bibliográficas
    • J. Aczel and J. Dhombres, Functional equations in several variables. Cambridge: Cambridge University Press, 1989, doi: 10.1017/CBO9781139086578.
    • A. Chahbi, B. Fadli and S. Kabbaj, “A generalization of the symmetrized multiplicative Cauchy equation”, Acta mathematica hungarica, vol....
    • E. Elqorachi and A. Redouani, “Solutions and stability of variant of Wilson’s functional equation”, Proyecciones (Antofagasta, On line), vol....
    • B. Ebanks, R. Bruce, H. Stetkær, “On Wilson’s functional equations”, Aequationes mathematicae, vol. 89, no. 2, pp. 339-354, Apr. 2015, doi:...
    • B. Ebanks, H. Stetkær, “D’Alembert’s other functional equation on monoids with an involution”, Aequationes mathematicae, vol. 89, no. 1, pp....
    • B. Fadli, D. Zeglami, and S. Kabbaj, “A variant of Wilsons functional equation”, Publicationes Mathematicae Debrecen, vol. 87, no. 3-4, pp....
    • P. Kannapan, Functional equations and inequalities with applications, New York, NY: Springer, 2009, doi: 10.1007/978-0-387-89492-8.
    • P. Kannapan, “A functional equation for the cosine”, Canadian mathematical bulletin, vol. 11, no. 3, pp. 495-498, Aug. 1968, doi: 10.4153/CMB-1968-059-8.
    • P. Kannappan, “The functional equation f (xy)+f (xy−1) = 2f (x)f (y) for groups”, Proceedings of the American mathematical society,...
    • H. Stetkær, “On multiplicative maps”, Semigroup forum, vol 63, no. 3, pp. 466-468, Oct. 2001, doi: 10.1007/s002330010077.
    • H. Stetkær, Functional equations on groups, Singapore, World Scientific Publishing, 2013, doi: 10.1142/8830.
    • H. Stetkær, “A variant of d’Alembert’s functional equation”, Aequationes mathematicae, vol. 89, no. 3, pp. 657-662, Jun. 2015, doi: 10.1007/s00010-014-0253-y.
    • H. Stetkær, “D’Alembert’s functional equation on groups”, Banach center publications, vol. 99, pp. 173-191, 2013, doi: 10.4064/bc99-0-11.
    • H. Stetkær, “On a variant of Wilson’s functional equation on group”, Aequationes mathematicae, vol. 68, no. 3, pp. 160-176, Dec. 2004, doi:...
    • W. Wilson, “On certain related functional equations”, Bulletin of the American mathematical society, vol. 26, no. 7, pp. 300-312, 1920, doi:...
    • W. Wilson, “Two general functional equations”, Bulletin of the American mathematical society, vol. 31, no. 7, pp. 330-334, 1925, doi: 10.1090/S0002-9904-1925-04045-8.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno