Ir al contenido

Documat


Sobre (1, 1) pares coherentes simétricos y polinomios ortogonales Sobolev: un algoritmo para calcular coeficientes de Fourier

  • Dueñas Ruiz, Herbert [1] ; Marcellán, Francisco [2] Árbol académico ; Molano, Alejandro [3]
    1. [1] Universidad Nacional de Colombia

      Universidad Nacional de Colombia

      Colombia

    2. [2] Universidad Carlos III de Madrid

      Universidad Carlos III de Madrid

      Madrid, España

    3. [3] Universidad Pedagógica y Tecnológica de Colombia

      Universidad Pedagógica y Tecnológica de Colombia

      Colombia

  • Localización: Revista Colombiana de Matemáticas, ISSN-e 0034-7426, Vol. 53, Nº. 2, 2019, págs. 139-164
  • Idioma: español
  • DOI: 10.15446/recolma.v53n2.85524
  • Títulos paralelos:
    • On Symmetric (1, 1)-Coherent Pairs and Sobolev Orthogonal polynomials: an algorithm to compute Fourier coefficients
  • Enlaces
  • Resumen
    • español

      En el artículo pionero [13], fue introducido el concepto de Par Coherente por Iserles et al. En particular, allí es descrito un algoritmo para calcular coeficientes de Fourier de expansiones de polinomios ortogonales de tipo Sobolev definidos a partir de pares de medidas coherentes soportadas en un subconjunto infinito de la recta real. En esta contribución extendemos tal algoritmo en el contexto de los llamados Pares Simétricos (1, 1)-Coherentes presentados en [8].

    • English

      In the pioneering paper [13], the concept of Coherent Pair was introduced by Iserles et al. In particular, an algorithm to compute Fourier Coefficients in expansions of Sobolev orthogonal polynomials defined from coherent pairs of measures supported on an infinite subset of the real line is described. In this paper we extend such an algorithm in the framework of the so called Symmetric (1, 1)-Coherent Pairs presented in [8].

  • Referencias bibliográficas
    • P. Althammer, Eine erweiterung des orthogonalitatsbegriffes bei polynomen und deren anwendung auf die beste approximation, J. Reine Angew....
    • A. C. Berti and A. Sri Ranga, Companion orthogonal polynomials: some applications, Appl. Numer. Math. 39 (2001), 127-149.
    • C. Brezinski, A direct proof of the Christoffel-Darboux identity and its equivalence to the recurrence relationship, J Comput Appl Math. 32...
    • T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, 1978.
    • M. N. de Jesús, F. Marcellán, J. Petronilho, and N. Pinzón-Cortés, (M, N)-coherent pairs of order (m, k) and Sobolev orthogonal polynomials,...
    • M. N. de Jesús and J. Petronilho, On linearly related sequences of derivatives of orthogonal polynomials, J. Math. Anal. Appl. 347 (2008),...
    • A. M. Delgado, Ortogonalidad no estándar: problemas directos e inversos, Tesis doctoral, Universidad Carlos III de Madrid, 2006.
    • A. M. Delgado and F. Marcellán, On an extension of symmetric coherent pairs of orthogonal polynomials, J. Comput. Appl. Math. 178 (2005),...
    • H. Dueñas, F. Marcellán, and A. Molano, Asymptotics of Sobolev orthogonal polynomials for Hermite (1,1)-coherent pairs, J. Math. Anal. Appl....
    • H. Dueñas, F. Marcellán, and A. Molano, A classification of symmetric (1, 1)-coherent pairs, Mathematics 7 (2019), no. 2-213, 1-32.
    • J. Favard, Sur les polynômes de Tchebicheff, C.R. Acad. Sci. Paris 200 (1935), 2052-2053.
    • B. Fischer and G. H. Golub, How to generate unknown orthogonal polynomials out of known orthogonal polynomials, J. Comput. Appl. Math. 43...
    • A. Iserles, P. E. Koch, S. P. Norsett, and J. M. Sanz-Serna, On polynomials orthogonal with respect to certain Sobolev inner products, J....
    • M. Ismail and D. R. Masson, Generalized orthogonality and continued fractions, J. Approx. Theory 83 (1995), 1-40.
    • D. C. Lewis, Polynomial least square approximations, Amer. J. Math. 69 (1947), 273-278.
    • F. Marcellán and R. Álvarez Nodarse, On the "Favard theorem" and its extensions, J. Comput. Appl. Math. 127 (2001), 231-254.
    • extensions, J. Comput. Appl. Math. 127 (2001), 231-254.
    • F. Marcellán and Y. Xu, On Sobolev orthogonal polynomials, Expo. Math. 33 (2015), no. 3, 308-352.
    • P. Maroni, Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques, In Orthogonal polynomials...
    • H. G. Meijer, A short history of orthogonal polynomials in a Sobolev space I. The non-discrete case, Niew Archief voor Wiskunde 14 (1996),...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno