Ir al contenido

Documat


Model-Based Approach to the Joint Analysis of Single-Cell Data on Chromatin Accessibility and Gene Expression

  • Zhixiang Lin [1] ; Mahdi Zamanighomi [3] ; Timothy Daley [2] ; Shining Ma [2] ; Wong, Wing Hung [2]
    1. [1] Chinese University of Hong Kong

      Chinese University of Hong Kong

      RAE de Hong Kong (China)

    2. [2] Stanford University

      Stanford University

      Estados Unidos

    3. [3] Broad Institute of MIT and Harvard
  • Localización: Statistical science, ISSN 0883-4237, Vol. 35, Nº. 1, 2020 (Ejemplar dedicado a: Statistics and Science), págs. 2-13
  • Idioma: inglés
  • DOI: 10.1214/19-sts714
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Unsupervised methods, including clustering methods, are essential to the analysis of single-cell genomic data. Model-based clustering methods are under-explored in the area of single-cell genomics, and have the advantage of quantifying the uncertainty of the clustering result. Here we develop a model-based approach for the integrative analysis of single-cell chromatin accessibility and gene expression data. We show that combining these two types of data, we can achieve a better separation of the underlying cell types. An efficient Markov chain Monte Carlo algorithm is also developed.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno