Ir al contenido

Documat


Optimal adaptive estimation of the relative density

  • Gaëlle Chagny [1] ; Claire Lacour [2]
    1. [1] University of Rouen

      University of Rouen

      Arrondissement de Rouen, Francia

    2. [2] University of Paris-Sud

      University of Paris-Sud

      Arrondissement de Palaiseau, Francia

  • Localización: Test: An Official Journal of the Spanish Society of Statistics and Operations Research, ISSN-e 1863-8260, ISSN 1133-0686, Vol. 24, Nº. 3, 2015, págs. 605-631
  • Idioma: inglés
  • DOI: 10.1007/s11749-015-0426-6
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • This paper deals with the classical statistical problem of comparing the probability distributions of two real random variables X and X0, from a double independent sample. While most of the usual tools are based on the cumulative distribution functions F and F0 of the variables, we focus on the relative density, a function recently used in two-sample problems, and defined as the density of the variable F0(X). We provide a nonparametric adaptive strategy to estimate the target function. We first define a collection of estimates using a projection on the trigonometric basis and a preliminary estimator of F0. An estimator is selected among this collection of projection estimates, with a criterion in the spirit of the Goldenshluger–Lepski methodology. We show the optimality of the procedure both in the oracle and the minimax sense: the convergence rate for the risk computed from an oracle inequality matches with the lower bound that we also derived. Finally, some simulations illustrate the method.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno