Ir al contenido

Documat


Weighted local linear CQR for varying-coefficient models with missing covariates

  • Linjun Tang [1] ; Zhangong Zhou [1]
    1. [1] Jiaxing University

      Jiaxing University

      China

  • Localización: Test: An Official Journal of the Spanish Society of Statistics and Operations Research, ISSN-e 1863-8260, ISSN 1133-0686, Vol. 24, Nº. 3, 2015, págs. 583-604
  • Idioma: inglés
  • DOI: 10.1007/s11749-014-0425-z
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • This paper considers composite quantile regression (CQR) estimation and inference for varying-coefficient models with missing covariates. We propose the weighted local linear CQR (WLLCQR) estimators for unknown coefficient function when selection probabilities are known, estimated nonparametrically or parametrically. Theoretical and numerical results demonstrate that the WLLCQR estimators with estimating weights are more efficient than the true weights. Moreover, a goodness-of-fit test based on the WLLCQR fittings is developed to test whether the coefficient functions are actually varying. The finite-sample performance of the proposed methodology is assessed by simulation studies. A real data set is conducted to illustrate our proposed method.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno