Ir al contenido

Documat


Robust estimation of multivariate location and scatter in the presence of cellwise and casewise contamination

  • Claudio Agostinelli [3] Árbol académico ; Andy Leung [1] ; Victor J. Yohai [2] Árbol académico ; Ruben H. Zamar [1]
    1. [1] University of British Columbia

      University of British Columbia

      Canadá

    2. [2] Universidad de Buenos Aires

      Universidad de Buenos Aires

      Argentina

    3. [3] Università Ca’ Foscari di Venezia
  • Localización: Test: An Official Journal of the Spanish Society of Statistics and Operations Research, ISSN-e 1863-8260, ISSN 1133-0686, Vol. 24, Nº. 3, 2015, págs. 441-461
  • Idioma: inglés
  • DOI: 10.1007/s11749-015-0450-6
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Multivariate location and scatter matrix estimation is a cornerstone in multivariate data analysis. We consider this problem when the data may contain independent cellwise and casewise outliers. Flat data sets with a large number of variables and a relatively small number of cases are common place in modern statistical applications. In these cases, global down-weighting of an entire case, as performed by traditional robust procedures, may lead to poor results. We highlight the need for a new generation of robust estimators that can efficiently deal with cellwise outliers and at the same time show good performance under casewise outliers.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno