Ir al contenido

Documat


On the point process of near-record values

  • Raúl Gouet [1] ; F. Javier López [2] ; Gerardo Sanz [2]
    1. [1] Universidad de Chile

      Universidad de Chile

      Santiago, Chile

    2. [2] Universidad de Zaragoza

      Universidad de Zaragoza

      Zaragoza, España

  • Localización: Test: An Official Journal of the Spanish Society of Statistics and Operations Research, ISSN-e 1863-8260, ISSN 1133-0686, Vol. 24, Nº. 2, 2015, págs. 302-321
  • Idioma: inglés
  • DOI: 10.1007/s11749-014-0408-0
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let (Xn) be a sequence of independent and identically distributed random variables, with common absolutely continuous distribution F. An observation Xn is a near-record if Xn∈(Mn−1−a,Mn−1], where Mn=max{X1,…,Xn} and a>0 is a parameter. We analyze the point process η on [0,∞) of near-record values from (Xn), showing that it is a Poisson cluster process. We derive the probability generating functional of η and formulas for the expectation, variance and covariance of the counting variables η(A),A⊂[0,∞). We also obtain strong convergence and asymptotic normality of η(t):=η([0,t]), as t→∞, under mild tail-regularity conditions on F. For heavy-tailed distributions, with square-integrable hazard function, we show that η(t) grows to a finite random limit η(∞) and compute its probability generating function. We apply our results to Pareto and Weibull distributions and include an example of application to real data.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno