Ir al contenido

Documat


Spatio-temporal circular models with non-separable covariance structure

  • Gianluca Mastrantonio [1] ; Giovanna Jona Lasinio [2] ; Alan E. Gelfand [3]
    1. [1] Roma Tre University

      Roma Tre University

      Roma Capitale, Italia

    2. [2] Università de Roma La Sapienza

      Università de Roma La Sapienza

      Roma Capitale, Italia

    3. [3] Duke University

      Duke University

      Township of Durham, Estados Unidos

  • Localización: Test: An Official Journal of the Spanish Society of Statistics and Operations Research, ISSN-e 1863-8260, ISSN 1133-0686, Vol. 25, Nº. 2, 2016, págs. 331-350
  • Idioma: inglés
  • DOI: 10.1007/s11749-015-0458-y
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Circular data arise in many areas of application. Recently, there has been interest in looking at circular data collected separately over time and over space. Here, we extend some of this work to the spatio-temporal setting, introducing space–time dependence. We accommodate covariates, implement full kriging and forecasting, and also allow for a nugget which can be time dependent. We work within a Bayesian framework, introducing suitable latent variables to facilitate Markov chain Monte Carlo model fitting. The Bayesian framework enables us to implement full inference, obtaining predictive distributions for kriging and forecasting. We offer comparison between the less flexible but more interpretable wrapped Gaussian process and the more flexible but less interpretable projected Gaussian process. We do this illustratively using both simulated data and data from computer model output for wave directions in the Adriatic Sea off the coast of Italy.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno