Ir al contenido

Documat


A plug-in approach to sparse and robust principal component analysis

  • Luca Greco [1] ; Alessio Farcomeni [2]
    1. [1] University of Sannio

      University of Sannio

      Benevento, Italia

    2. [2] University of Rome
  • Localización: Test: An Official Journal of the Spanish Society of Statistics and Operations Research, ISSN-e 1863-8260, ISSN 1133-0686, Vol. 25, Nº. 3, 2016, págs. 449-481
  • Idioma: inglés
  • DOI: 10.1007/s11749-015-0464-0
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We propose a method for sparse and robust principal component analysis. The methodology is structured in two steps: first, a robust estimate of the covariance matrix is obtained, then this estimate is plugged-in into an elastic-net regression which enforces sparseness. Our approach provides an intuitive, general and flexible extension of sparse principal component analysis to the robust setting. We also show how to implement the algorithm when the dimensionality exceeds the number of observations by adapting the approach to the use of robust loadings from ROBPCA. The proposed technique is seen to compare well for simulated and real datasets.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno