Ir al contenido

Documat


Robust and efficient direction identification for groupwise additive multiple-index models and its applications

  • Kangning Wang [1] ; Lu Lin [2]
    1. [1] Chongqing University of Arts and Sciences

      Chongqing University of Arts and Sciences

      China

    2. [2] Shandong University

      Shandong University

      China

  • Localización: Test: An Official Journal of the Spanish Society of Statistics and Operations Research, ISSN-e 1863-8260, ISSN 1133-0686, Vol. 26, Nº. 1, 2017, págs. 22-45
  • Idioma: inglés
  • DOI: 10.1007/s11749-016-0496-0
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • This paper concerns robust and efficient direction identification for a groupwise additive multiple-index model, in which each additive function has a single-index structure. Interestingly, without involving non-parametric approach, we show that the directions of all the index parameter vectors can be recovered by a simple linear composite quantile regression (CQR). As a specific application, a iterative-free CQR estimation procedure for the partially linear single-index model is proposed. Furthermore, it can also be used to develop a penalized CQR procedure for variable selection in the high-dimensional settings. The new method has superiority in robustness and efficiency by inheriting the advantage of the CQR approach. Simulation results and real-data analysis also confirm our method.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno