Ir al contenido

Documat


Ergodic properties of Markov semigroups in von Neumann algebras

  • Autores: Katarzyna Kielanowicz, Andrzej Luczak
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 64, Nº 1, 2020, págs. 283-331
  • Idioma: inglés
  • DOI: 10.5565/publmat6412012
  • Enlaces
  • Resumen
    • We investigate ergodic properties of Markov semigroups in von Neumann algebras with the help of the notion of constrictor, which expresses the idea of closeness of the orbits of the semigroup to some set, as well as the notion of "generalised averages", which generalises to arbitrary abelian semigroups the classical notions of Ces`aro, Borel, or Abel means. In particular, mean ergodicity, asymptotic stability, and structure properties of the fixed-point space are analysed in some detail.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno