F. Ferraty, Aldo Goia , Ernesto Salinelli, Philippe Vieu
In this paper we introduce a flexible approach to approximate the regression function in the case of a functional predictor and a scalar response. Following the Projection Pursuit Regression principle, we derive an additive decomposition which exploits the most interesting projections of the prediction variable to explain the response. On one hand, this approach allows us to avoid the well-known curse of dimensionality problem, and, on the other one, it can be used as an exploratory tool for the analysis of functional dataset. The terms of such decomposition are estimated with a procedure that combines a spline approximation and the one-dimensional Nadaraya–Watson approach. The good behavior of our procedure is illustrated from theoretical and practical points of view. Asymptotic results state that the terms in the additive decomposition can be estimated without suffering from the dimensionality problem, while some applications to real and simulated data show the high predictive performance of our method.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados