Ir al contenido

Documat


Recovering the shape of a point cloud in the plane

    1. [1] Universidade de Santiago de Compostela

      Universidade de Santiago de Compostela

      Santiago de Compostela, España

  • Localización: Test: An Official Journal of the Spanish Society of Statistics and Operations Research, ISSN-e 1863-8260, ISSN 1133-0686, Vol. 22, Nº. 1, 2013, págs. 19-45
  • Idioma: inglés
  • DOI: 10.1007/s11749-012-0283-5
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this work we deal with the problem of estimating the support S of a probability distribution under shape restrictions. The shape restriction we deal with is an extension of the notion of convexity named α-convexity. Instead of assuming, as in the convex case, the existence of a separating hyperplane for each exterior point of S, we assume the existence of a separating open ball with radius α. Given an α-convex set S, the α-convex hull of independent random points in S is the natural estimator of the set. If α is unknown the r n -convex hull of the sample can be considered being r n a sequence of positive numbers. We analyze the asymptotic properties of the r n -convex hull estimator in the bidimensional case and obtain the convergence rate for the expected distance in measure between the set and the estimator. The geometrical complexity of the estimator and its dependence on r n are also obtained via the analysis of the expected number of vertices of the r n -convex hull.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno