Shonosuke Sugasawa, Tatsuya Kubokawa, J. N. K. Rao
The authors use an empirical Bayes (EB) approach to small area estimation under area-level unmatched sampling and linking models. Model parameters are estimated by a unified expectation and maximization (EM) algorithm and used to obtain EB estimators of area parameters. Results are extended to a nonparametric linking model based on a spline approximation. Approximate EB estimators that are computationally simpler are also obtained. Different bootstrap approaches to estimating the mean squared error (MSE) of the EB estimators are proposed. Results of a simulation study on the performance of the proposed methods are presented. Proposed methods are applied to data from a survey of family income and expenditure in Japan and poverty rates in Spanish provinces.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados