Ir al contenido

Documat


Machine learning models for bulk electric system well-being assessment

  • Rocco S., Claudio M. [1] ; Muselli, Marco [2]
    1. [1] Universidad Central de Caracas
    2. [2] CNR (Consiglio Nazionale delle Ricerche)
  • Localización: XII Conferencia de la Asociación Española para la Inteligencia Artificial: (CAEPIA 2007). Actas / coord. por Daniel Borrajo Millán Árbol académico, Luis Castillo Vidal Árbol académico, Juan Manuel Corchado Rodríguez Árbol académico, Vol. 1, 2007, ISBN 978-84-611-8847-5, págs. 297-306
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this paper we compare two machine learning algorithms (Support Vector Machine (SVM) and Hamming Clustering (HC)) to perform a reliability assessment of an electric power system. Bulk electric system well-being analysis, which corresponds to the classification of the possible state of an electric power system as Healthy, Marginal or At Risk is properly emulated by training multi-class SVM and HC models, with a small amount of information. The experiments show that although both models produce reasonable predictions, HC accuracy is greater than the SVM one.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno