Ir al contenido

Documat


Data science, big data and statistics

  • Pedro Galeano [1] Árbol académico ; Daniel Peña [1] Árbol académico
    1. [1] Universidad Carlos III de Madrid

      Universidad Carlos III de Madrid

      Madrid, España

  • Localización: Test: An Official Journal of the Spanish Society of Statistics and Operations Research, ISSN-e 1863-8260, ISSN 1133-0686, Vol. 28, Nº. 2, 2019, págs. 289-329
  • Idioma: inglés
  • DOI: 10.1007/s11749-019-00651-9
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • This article analyzes how Big Data is changing the way we learn from observations. We describe the changes in statistical methods in seven areas that have been shaped by the Big Data-rich environment: the emergence of new sources of information; visualization in high dimensions; multiple testing problems; analysis of heterogeneity; automatic model selection; estimation methods for sparse models; and merging network information with statistical models. Next, we compare the statistical approach with those in computer science and machine learning and argue that the convergence of different methodologies for data analysis will be the core of the new field of data science. Then, we present two examples of Big Data analysis in which several new tools discussed previously are applied, as using network information or combining different sources of data. Finally, the article concludes with some final remarks.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno