Ir al contenido

Documat


Heavy-tailed longitudinal regression models for censored data: a robust parametric approach

  • Larissa A. Matos [1] ; Víctor H. Lachos [2] ; Tsung-I Lin [3] ; Luis M. Castro [4]
    1. [1] Universidade Estadual de Campinas

      Universidade Estadual de Campinas

      Brasil

    2. [2] University of Connecticut

      University of Connecticut

      Town of Mansfield, Estados Unidos

    3. [3] National Chung Hsing University

      National Chung Hsing University

      Taiwán

    4. [4] Pontificia Universidad Católica de Chile

      Pontificia Universidad Católica de Chile

      Santiago, Chile

  • Localización: Test: An Official Journal of the Spanish Society of Statistics and Operations Research, ISSN-e 1863-8260, ISSN 1133-0686, Vol. 28, Nº. 3, 2019, págs. 844-878
  • Idioma: inglés
  • DOI: 10.1007/s11749-018-0603-5
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Longitudinal HIV-1 RNA viral load measures are often subject to censoring due to upper and lower detection limits depending on the quantification assays. A complication arises when these continuous measures present a heavy-tailed behavior because inference can be seriously affected by the misspecification of their parametric distribution. For such data structures, we propose a robust nonlinear censored regression model based on the scale mixtures of normal distributions. By taking into account the autocorrelation existing among irregularly observed measures, a damped exponential correlation structure is considered. A stochastic approximation of the EM algorithm is developed to obtain the maximum likelihood estimates of the model parameters. The main advantage of this new procedure os to allow estimating the parameters of interest and evaluating the log-likelihood function easily and quickly. Furthermore, the standard errors of the fixed effects and predictions of unobservable values of the response can be obtained as a byproduct. The practical utility of the proposed method is exemplified using both simulated and real data.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno