Ir al contenido

Documat


Special cubic birational transformations of projective spaces

  • Autores: Giovanni Staglianò
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 71, Fasc. 1, 2020, págs. 123-150
  • Idioma: inglés
  • DOI: 10.1007/s13348-019-00251-8
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We extend our classification of special Cremona transformations whose base locus has dimension at most three to the case when the target space is replaced by a (locally) factorial complete intersection.

  • Referencias bibliográficas
    • Aure, A.B., Ranestad, K.: The smooth surfaces of degree 9 in {\mathbb{P}}^4. In: Ellingsrud, G., Peskine, C., Sacchiero, G., Stromme, S.A....
    • Alzati, A., Sierra, J.C.: Quadro-quadric special birational transformations of projective spaces. Int. Math. Res. Not. IMRN 2015(1), 55–77...
    • Alzati, A., Sierra, J.C.: Special birational transformations of projective spaces. Adv. Math. 289, 567–602 (2016)
    • Addington, N., Thomas, R.: Hodge theory and derived categories of cubic fourfolds. Duke Math. J. 163(10), 1886–1927 (2014)
    • Besana, G.M., Biancofiore, A.: Degree eleven manifolds of dimension greater or equal to three. Forum Math. 17(5), 711–733 (2005)
    • Besana, G.M., Biancofiore, A.: Numerical constraints for embedded projective manifolds. Forum Math. 17(4), 613–636 (2005)
    • Beltrametti, M., Biancofiore, A., Sommese, A.J.: Projective n-folds of log-general type. I. Trans. Am. Math. Soc. 314(2), 825–825 (1989)
    • Bertram, A., Ein, L., Lazarsfeld, R.: Vanishing theorems, a theorem of Severi, and the equations defining projective varieties. J. Am. Math....
    • Bolognesi, M., Russo, F., Staglianò, G.: Some loci of rational cubic fourfolds. Math. Ann. (to appear). Preprint arXiv:1504.05863 (2015)
    • Beltrametti, M.C., Sommese, A.J.: The Adjunction Theory of Complex Projective Varieties. de Gruyter Expositions in Mathematics, vol. 16. Walter...
    • Beltrametti, M., Schneider, M., Sommese, A.J.: Threefolds of degree 11 in {\mathbb{P}}^5. In: Ellingsrud, G., Peskine, C., Sacchiero, G.,...
    • Bertolini, M., Turrini, C.: Threefolds in {\mathbb{P}}^6 of degree 12. Adv. Geom. 15(2), 245–262 (2015)
    • Castelnuovo, G.: Ricerche di geometria sulle curve algebriche. Atti R. Accad. Sci. Torino 24, 346–373 (1889)
    • Crauder, B., Katz, S.: Cremona transformations with smooth irreducible fundamental locus. Am. J. Math. 111(2), 289–307 (1989)
    • Crauder, B., Katz, S.: Cremona transformations and Hartshorne’s conjecture. Am. J. Math. 113(2), 269–285 (1991)
    • Ciliberto, C., Mella, M., Russo, F.: Varieties with one apparent double point. J. Algebr. Geom. 13(3), 475–512 (2004)
    • Debarre, O.: Higher-Dimensional Algebraic Geometry. Universitext. Springer, New York (2001)
    • Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular—a computer algebra system for polynomial computations (version 4-1-1). (2018)....
    • Dolgachev, I.: Lectures on Cremona transformations, Ann Arbor-Rome. (2010/2011) http://www.math.lsa.umich.edu/~idolga/cremonalect.pdf. Accessed...
    • Edge, W.L.: The number of apparent double points of certain loci. Math. Proc. Camb. Philos. Soc. 28(3), 285–299 (1932)
    • Ein, L., Shepherd-Barron, N.: Some special Cremona transformations. Am. J. Math. 111(5), 783–800 (1989)
    • Fano, G.: Sulle forme cubiche dello spazio a cinque dimensioni contenenti rigate razionali del 4^\circ ordine. Comment. Math. Helv. 15(1),...
    • Fu, B., Hwang, J.M.: Special birational transformations of type (2,1). J. Algebr. Geom. 27, 55–89 (2018)
    • Fania, M.L., Livorni, E.L.: Degree nine manifolds of dimension greater than or equal to 3. Math. Nachr. 169(1), 117–134 (1994)
    • Fania, M.L., Livorni, E.L.: Degree ten manifolds of dimension n greater than or equal to 3. Math. Nachr. 188(1), 79–108 (1997)
    • Fujita, T.: Projective threefolds with small secant varieties. Sci. Pap. Coll. Gen. Ed. Univ. Tokyo 32, 33–46 (1982)
    • Fujita, T.: Classification Theories of Polarized Varieties. London Mathematical Society Lecture Note Series, vol. 155. Cambridge Univ. Press,...
    • Fulton, W.: Intersection Theory. Ergeb. Math. Grenzgeb. (3), vol. 2. Springer, Berlin (1984)
    • Grothendieck, A.: Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux. Advanced Studies in Pure Mathematics,...
    • Grayson, D.R., Stillman, M.E.: Macaulay2: a software system for research in algebraic geometry (version 1.13) (2019). http://www.math.uiuc.edu/Macaulay2/....
    • Hartshorne, R.: Ample Subvarieties of Algebraic Varieties. Lecture Notes in Mathematics, vol. 156. Springer, Berlin (1970)
    • Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer, New York (1977)
    • Hartshorne, R.: Generalized divisors on Gorenstein schemes. K-Theory 8(3), 287–339 (1994)
    • Hassett, B.: Some rational cubic fourfolds. J. Algebr. Geom. 8(1), 103–114 (1999)
    • Hassett, B.: Special cubic fourfolds. Compos. Math. 120(1), 1–23 (2000)
    • Hassett, B.: Cubic fourfolds, K3 surfaces, and rationality questions. In: Pardini, R., Pirola, G.P. (eds.) Rationality Problems in Algebraic...
    • Hulek, K., Katz, S., Schreyer, F.-O.: Cremona transformations and syzygies. Math. Z. 209(1), 419–443 (1992)
    • Ionescu, P.: Embedded Projective Varieties of Small Invariants. Algebraic Geometry Bucharest 1982, Lecture Notes in Mathematics, vol. 1056,...
    • Ionescu, P.: Embedded projective varieties of small invariants, II. Rev. Roum. Math. Pures Appl. 31, 539–544 (1986)
    • Ionescu, P.: Generalized adjunction and applications. Math. Proc. Camb. Philos. Soc. 99(3), 457–472 (1986)
    • Ionescu, P.: Embedded Projective Varieties of Small Invariants, III. Algebraic Geometry, Lecture Notes in Mathematics, vol. 1417, pp. 138–154....
    • Ionescu, P., Russo, F.: Conic-connected manifolds. J. Reine Angew. Math. 644, 145–157 (2010)
    • Katz, S.: The cubo-cubic transformation of {\mathbb{P}}^3 is very special. Math. Z. 195(2), 255–257 (1987)
    • Kobayashi, S., Ochiai, T.: Characterizations of complex projective spaces and hyperquadrics. J. Math. Kyoto Univ. 13(1), 31–47 (1973)
    • Kuznetsov, A.: Derived Categories of Cubic Fourfolds. Cohomological and Geometric Approaches to Rationality Problems. Progress in Mathematics,...
    • Kuznetsov, A.: Derived categories view on rationality problems. In: Pardini, R., Pirola, G.P. (eds.) Rationality Problems in Algebraic Geometry:...
    • Lazarsfeld, R.: Positivity in Algebraic Geometry. I. Ergeb. Math. Grenzgeb. (3). Classical Setting: Line Bundles and Linear Series, vol. 48....
    • Le Barz, P.: Quadrisécantes d’une surface de {\mathbb{P}}^5. C. R. Acad. Sci. Paris Sér. I Math. 291, 639–642 (1980)
    • Le Barz, P.: Formules pour les multisécantes des surfaces. C. R. Acad. Sci. Paris Sér. I Math. 292, 797–800 (1981)
    • Li, Q.: Quadro-quadric special birational transformations from projective spaces to smooth complete intersections. Int. J. Math. 27(1), 1650004...
    • Livorni, E.L., Sommese, A.J.: Threefolds of non negative Kodaira dimension with sectional genus less than or equal to 15. Ann. Sc. Norm. Super....
    • Morin, U.: Sulla razionalità dell’ipersuperficie cubica dello spazio lineare S_5. Rend. Semin. Mat. Univ. Padova 11, 108–112 (1940)
    • Mukai, S.: Biregular classification of Fano 3-folds and Fano manifolds of coindex 3. Proc. Natl. Acad. Sci. USA 86(9), 3000–3002 (1989)
    • Nuer, H.: Unirationality of moduli spaces of special cubic fourfolds and K3 surfaces. Algebr. Geom. 4, 281–289 (2015)
    • Okonek, C.: Notes on varieties of codimension 3 in {\mathbb{P}}^n. Manuscr. Math. 84(1), 421–442 (1994)
    • Ottaviani, G.: On 3-folds in {\mathbb{P}}^5 which are scrolls. Ann. Sc. Norm. Super. Pisa 19, 451–471 (1992)
    • Russo, F., Staglianò, G.: Congruences of 5-secant conics and the rationality of some admissible cubic fourfolds. Duke Math. J. (to appear)....
    • Russo, F., Staglianò, G.: Explicit rationality of some cubic fourfolds. arXiv:1811.03502 (2018)
    • Russo, F.: Varieties with quadratic entry locus, I. Math. Ann. 344(3), 597–617 (2009)
    • Semple, J.G.: On representations of the {S}_k’s of {S}_n and of the Grassmann manifolds {G}(k, n). Proc. Lond. Math. Soc. s2–32(1), 200–221...
    • Simis, A.: Cremona transformations and some related algebras. J. Algebra 280(1), 162–179 (2004)
    • Sommese, A.J.: Hyperplane sections of projective surfaces I. The adjunction mapping. Duke Math. J. 46(2), 377–401 (1979)
    • Sommese, A.J.: On the Adjunction Theoretic Structure of Projective Varieties. Complex Analysis and Algebraic Geometry. Lecture Notes in Mathematics,...
    • Semple, J.G., Roth, L.: Introduction to Algebraic Geometry. Oxford Univ. Press, New York (1985). Reprint of the 1949 original
    • Semple, J.G., Tyrrell, J.A.: Specialization of Cremona transformations. Mathematika 15, 171–177 (1968)
    • Semple, J.G., Tyrrell, J.A.: The Cremona transformation of {S}_6 by quadrics through a normal elliptic septimic scroll ^1 {R}^7. Mathematika...
    • Semple, J.G., Tyrrell, J.A.: The {T}_{2,4} of {S}_6 defined by a rational surface ^3{F}^8. Proc. Lond. Math. Soc. s3–20, 205–221 (1970)
    • Staglianò, G.: On special quadratic birational transformations of a projective space into a hypersurface. Rend. Circ. Mat. Palermo 61(3),...
    • Staglianò, G.: On special quadratic birational transformations whose base locus has dimension at most three. Atti Accad. Naz. Lincei Cl. Sci....
    • Staglianò, G.: Examples of special quadratic birational transformations into complete intersections of quadrics. J. Symbol. Comput. 74, 635–649...
    • Staglianò, G.: Special cubic Cremona transformations of {\mathbb{P}}^6 and {\mathbb{P}}^7. Adv. Geom. (in press). arXiv:1509.06028 (2016)
    • Staglianò, G.: A Macaulay2 package for computations with rational maps. J. Softw. Algebra. Geom. 8(1), 61–70 (2018) Staglianò, G.: A package...
    • Sommese, A.J., Van de Ven, A.: On the adjunction mapping. Math. Ann. 278(1), 593–603 (1987)
    • Vermeire, P.: Some results on secant varieties leading to a geometric flip construction. Compos. Math. 125(3), 263–282 (2001)
    • Zak, F.L.: Tangents and Secants of Algebraic Varieties. Translations of Mathematical Monographs. Amer. Math. Soc., Providence (1993)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno