Ir al contenido

Documat


Existence and multiplicity of solutions for a class of fractional elliptic systems

  • Autores: Manassés de Souza
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 71, Fasc. 1, 2020, págs. 103-122
  • Idioma: inglés
  • DOI: 10.1007/s13348-019-00253-6
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this paper we are concerned with the existence and multiplicity of solutions of the following nonlocal system involving the fractional Laplacian \begin{aligned} (-\Delta )^\sigma u_i + a_i(x) u_i = f_i(x,u_1,\ldots ,u_m)\quad \text{ for }\;\; x \in \mathbb {R}^n \quad \text{ and }\;\; i=1,\ldots ,m, \end{aligned} where \sigma \in (0,1), n \ge 1, (-\Delta )^\sigma denotes the fractional Laplacian of order \sigma, a_i(x) are continuous and unbounded potentials which may change sign, and the nonlinearities f_i(x,u_1,\ldots ,u_m) are continuous functions which may be unbounded in x. We treat both the superquadratic situation and the nonquadratic situation at infinity on the nonlinearities f_i(x,u_1,\ldots ,u_m).

  • Referencias bibliográficas
    • Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)
    • Applebaum, D.: Lévy processes-From probability to finance quantum groups. Notices Am. Math. Soc. 51, 1336–1347 (2004)
    • Barrios, B., Colorado, E., de Pablo, A., Sánchez, U.: On some critical problems for the fractional Laplacian operator. J. Differ. Equ. 252,...
    • Bartolo, P., Benci, V., Fortunato, D.: Abstract critical point theorems and applications to some nonlinear problems with strong resonance...
    • Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations I. Existence of a ground state. Arch. Ration. Mech. Anal. 82, 313–345 (1983)
    • Brandle, C., Colorado, E., de Pablo, A., Sánchez, U.: A concave-convex elliptic problem involving the fractional laplacian. Proc. R. Soc....
    • Bucur, C., Valdinoci, E.: Nonlocal diffusion and applications. In: Lecture Notes of the Unione Matematica Italiana, 20. Springer, Unione Matematica...
    • Brezis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent. Commun. Pure Appl. Math....
    • Caffarelli, L.A.: Abel Symposium on Non-local Diffusions, Drifts and Games. Nonlinear Partial Differential Equations, vol. 7, pp. 37–52. Springer,...
    • Caffarelli, L.A., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32, 1245–1260 (2007)
    • Chang, X., Wang, Z.-Q.: Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity. Nonlinearity 26,...
    • Cheng, M.: Bound state for the fractional Schrödinger equation with unbounded potential. J. Math. Phys. 53, 043507, 7 (2012)
    • Costa, D.G.: On a class of elliptic systems in \mathbb{R}^n. Eletron. J. Differ. Eq. 7, 1–14 (1994)
    • Costa, D.G., Magalhães, C.A.: A variational approach to noncooperative elliptic systems. Nonlinear Anal. 25, 699–715 (1995)
    • de Souza, M., Araújo, Y.L.: Semilinear elliptic equations for the fractional Laplacian involving critical exponential growth. Math. Methods...
    • de Souza, M., Araújo, Y.L.: On a class of fractional Schrödinger equations in \mathbb{R}^n with sign-changing potential. Applicable 04, 538–551...
    • Dipierro, S., Pinamonti, A.: A geometric inequality and a symmetry result for elliptic systems involving the fractional Laplacian. J. Differ....
    • do Ó, J.M., Ferraz, D.: Concentration-compactness principle for nonlocal scalar field equations with critical growth. J. Math. Anal. Appl....
    • do Ó, J.M., Miyagaki, O.H., Squassina, M.: Critical and subcritical fractional problems with vainshing potentials. Commun. Contemp. Math....
    • Dipierro, S., Palatucci, G., Valdinoci, E.: Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian....
    • Felmer, P., Quaas, A., Tan, J.: Positive solutions of nonlinear Schrödinger equation with the fractional laplacian. Proc. R. Soc. Edinb. Sect....
    • Fiscella, A., Pucci, P., Saldi, S.: Existence of entire solutions for Schrödinger–Hardy systems involving two fractional operators. Nonlinear...
    • Gonçalves, J.V., Miyagaki, O.H.: Existence of nontrivial solutions for semilinear elliptic equations at resonance. Houst. J. Math. 16, 583–595...
    • Guo, Y.: Nonexistence and symmetry of solutions to some fractional Laplacian equations in the upper half space. Acta Math. Sci. Ser. B Engl....
    • Guo, Z., Luo, S., Zou, W.: On critical systems involving fractional Laplacian. J. Math. Anal. Appl. 446, 681–706 (2017)
    • He, Q., Peng, S., Peng, Y.: Existence, non-degeneracy of proportional positive solutions and least energy solutions for a fractional elliptic...
    • He, X., Squassina, M., Zou, W.: The Nehari manifold for fractional systems involving critical nonlinearities. Commun. Pure Appl. Anal. 15,...
    • Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 298–305 (2000)
    • Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66, 056108 (2002)
    • Li, G., Zhou, H.: Multiple solutions to p-Laplacian problems with asymptotic nonlinearity as u^{p-1} at infinity. J. Lond. Math. Soc. 65,...
    • Quaas, A., Xia, A.: A Liouville type theorem for Lane-Emden systems involving the fractional Laplacian. Nonlinearity 29, 2279–2297 (2016)
    • Rabinowitz, P.H.: Minimax methods in critical point theory with applications to differential equations. CBMS Regional Conf. Ser. in Math....
    • Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew Math. Phys. 43, 272–291 (1992)
    • Servadei, R., Valdinoci, E.: Mountain Pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 389, 887–898 (2012)
    • Servadei, R., Valdinoci, E.: Variational methods for non-local operators of elliptic type. Discrete Contin. Dyn. Syst. 33, 2105–2137 (2013)
    • Servadei, R., Valdinoci, E.: Weak and viscosity solutions of the fractional Laplace equation. Publ. Math. 1, 133–154 (2014)
    • Sirakov, B.: Existence and multiplicity of solutions of semi-linear elliptic equations in \mathbb{R}^N. Calc. Var. Partial Differ. Equ. 11,...
    • Shang, X., Zhang, J., Yang, Y.: On fractional Schödinger equation in \mathbb{R}^N with critical growth. J. Math. Phys. 54, Article ID: 121502,...
    • Secchi, S.: Ground state solutions for nonlinear fractional Schrödinger equations in \mathbb{R}^N. J. Math. Phys. 54, 031501 (2013)
    • Wang, Q.: Positive least energy solutions of fractional Laplacian systems with critical exponent. Electron. J. Differ. Equ. 116, (2016)
    • Xiang, M., Zhang, B., Wei, Z.: Existence of solutions to a class of quasilinear Schrödinger system involving the fractional p-Laplacian. Electron....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno