Let G be a simple graph and let \beta (G) be the matching number of G. It is well-known that {{\,\mathrm{reg}\,}}I(G) \leqslant \beta (G)+1. In this paper we show that {{\,\mathrm{reg}\,}}I(G) = \beta (G)+1 if and only if every connected component of G is either a pentagon or a Cameron–Walker graph.
© 2008-2025 Fundación Dialnet · Todos los derechos reservados