Ir al contenido

Documat


Detecting outliers in multivariate volatility models: a wavelet procedure

  • Aurea Grané [1] Árbol académico ; Belén Martín-Barragán [2] Árbol académico ; Helena Veiga [3]
    1. [1] Universidad Carlos III de Madrid

      Universidad Carlos III de Madrid

      Madrid, España

    2. [2] University of Edinburgh

      University of Edinburgh

      Reino Unido

    3. [3] Instituto Universitário de Lisboa

      Instituto Universitário de Lisboa

      Socorro, Portugal

  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 43, Nº. 2, 2019, págs. 289-316
  • Idioma: inglés
  • Enlaces
  • Resumen
    • It is well known that outliers can affect both the estimation of parameters and volatilities when fitting a univariate GARCH-type model. Similar biases and impacts are expected to be found on correlation dynamics in the context of multivariate time series. We study the impact of outliers on the estimation of correlations when fitting multivariate GARCH models and propose a general detection algorithm based on wavelets, that can be applied to a large class of multivariate volatility models. Its effectiveness is evaluated through a Monte Carlo study before it is applied to real data. The method is both effective and reliable, since it detects very few false outliers.

  • Referencias bibliográficas
    • Baillie, R. and Bollerslev, T. (1989). The message in daily exchange rates: A conditional variance tale. Journal of Business and Economic...
    • Bali, R. and Guirguis, H. (2007). Extreme observations and non-normality in ARCH and GARCH. International Review of Economics and Finance,...
    • Bauwens, L., Laurent, S. and Rombout, J. (2006). Multivariate GARCH models: A survey. Journal of Applied Econometrics, 21, 79–109.
    • Behmiri, N. and Manera, M. (2015). The role of outliers and oil price shocks on volatility of metal prices. Resources Policy, 46, 139–150.
    • Benjamini, Y. and Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics,...
    • Bingham, E. and Mannila, H. (2001). Proceedings of the seventh ACM SIGKDD international conference on knowledge and data mining, Random projection...
    • Bollerslev, T. (1990). Modeling the coherence in short-run nominal exchange rates: A multivariate generalized ARCH model. Review of Economics...
    • Boudt, K. and Croux, C. (2010). Robust m-estimation of multivariate GARCH models. Computational Statistics and Data Analysis, 54, 2459–2469.
    • Boudt, K., Danı́elsson, J. and Laurent, S. (2013). Robust forecasting of dynamic conditional correlation GARCH models. International Journal...
    • Carnero, M., Peña, D. and Ruiz, E. (2007). Effects of outliers on the identification and estimation of GARCH models. Journal of Time Series...
    • Carnero, M., Peña, D. and Ruiz, E. (2012). Estimating GARCH volatility in the presence of outliers. Economic Letters, 114, 86–90.
    • Charles, A. and Darné, O. (2014). Volatility persistence in crude oil markets. Energy Policy, 65, 729–742.
    • Chen, C. and Liu, L. (1993). Joint estimation of model parameters and outlier effects. Journal of American Statistical Association, 88, 284–297.
    • Cuesta-Albertos, J., del Barrio, E., Fraiman, R. and Matrán, C. (2007). The random projection method in goodness of fit for functional data....
    • Cuesta-Albertos, J., Fraiman, R. and Ransford, T. (2006). Random projections and goodness-of-fit tests in infinite-dimensional spaces. Bulletin...
    • Duan, J.-C., Gauthier, G., Simonato, J.-G. and Sasseville, C. (2006). Approximating the GJR-GARCH and EGARCH option pricing models analytically....
    • Engle, R. (2002). Dynamic conditional correlation? A simple class of multivariate GARCH models. Journal of Business and Economic Statistics,...
    • Engle, R. and Kroner, K. (1995). Multivariate simultaneous generalized ARCH. Econometric Theory, 11, 122–150.
    • Fox, A. (1972). Outliers in time series. Journal of Royal Statistical Society B, 34, 350–363.
    • Franses, P. and Ghijsels, H. (1999). Additive outliers, GARCH and forecasting volatility. International Journal of Forecasting, 15, 1–9.
    • Galeano, P. and Peña, D. (2013). Robustness and complex data structures, Finding outliers in linear and nonlinear time series, pp. 243–262....
    • Galeano, P., Peña, D. and Tsay, R. (2006). Outlier detection in multivariate time series by projection pursuit. Journal of the American...
    • Grané, A. and Veiga, H. (2010). Wavelet-based detection of outliers in financial time series. Computational Statistics and Data Analysis,...
    • Grané, A. and Veiga, H. (2014). Outliers, GARCH-type models and risk measures: A comparison of several approaches. Journal of Empirical...
    • Grané, A., Veiga, H. and Martı́n-Barragán, B. (2014). Additive Level Outliers in Multivariate GARCH Models. In V. Melas, S. Mignani,...
    • Grossi, L. and Laurini, F. (2009). A robust forward weighted lagrange multiplier test for conditional heteroscedasticity. Computational Statistics...
    • Hotta, L. and Tsay, R. (2012). Outliers in GARCH processes. In W. Bell, S. Hollan, and T. McElroy (Eds.), Economic Time Series: Modeling and...
    • Hotta, L. K. and Trucı́os, C. (2018). Advances in Mathematics and Applications., Inference in (M)GARCH Models in the Presence of Additive...
    • Kamranfar, H., Chinipardaz, R. and Mansouri, B. (2017). Detecting outliers in garch(p,q) models. Communications in Statistics Simulation and...
    • Kiefer, N. and Salmon, M. (1983). Testing normality in econometric models. Economics Letters, 11, 123– 127.
    • Ledolter, J. (1989). The effect of additive outliers on the forecasts from ARIMA models. International Journal of Forecasting, 5, 231–240.
    • Muler, N. and Yohai, V. J. (2008). Robust estimates for GARCH models. Journal of Statistical Planning and Inference, 138, 2918 – 2940.
    • Peña, D. and Prieto, F. (2001). Multivariate outlier detection and robust covariance matrix estimation. Technometrics, 43, 286–310.
    • Ramos, S., Martı́n-Barragán, B. and Veiga, H. (2015). Correlations between oil and stock markets: A wavelet-based approach. Economic Modelling,...
    • Roy, S. (1953). On a Heuristic Method of Test Construction and its use in Multivariate Analysis. The Annals of Mathematical Statistics, 24,...
    • Silvennoinen, A. and Teräsvirta, T. (2009). Handbook of Financial Time Series, Multivariate GARCH models, pp. 201–226. Springer.
    • Teräsvirta, T. (1996). Two stylized facts and the GARCH(1,1) model. Working Paper 96, Stockholm School of Economics.
    • Van Dijk, D., Franses, P. and Lucas, A. (1999). Testing for ARCH in the presence of additive outliers. Journal of Applied Econometrics, 14,...
    • Vempala, S. (2004). The Random Projection Method. Providence, RI: American Mathematical Society.
    • Verhoeven, P. and McAleer, M. (2000). Modelling outliers and extreme observations for ARMA-GARCH processes. Working Paper, University of Western...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno