Ir al contenido

Documat


Shifted Lagrangian Jacobi collocation scheme for numerical solution of a model of HIV infection

  • Autores: Sobhan Latifi, Mohammad M. Moayeri
  • Localización: SeMA Journal: Boletín de la Sociedad Española de Matemática Aplicada, ISSN-e 2254-3902, ISSN 2254-3902, Vol. 75, Nº. 3, 2018, págs. 379-398
  • Idioma: inglés
  • DOI: 10.1007/s40324-017-0138-9
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this paper, a system of nonlinear ordinary differential equations (NODEs), namely the equation model of the human immunodeficiency virus (HIV) infection of CD4+T cells, is studied. Our approach is implemented by using the Shifted-Lagrangian Jacobi (SLJ) polynomials formed by Shifted-Jacobi-Gauss-Radau (SJ-GR) points. In a new insight, by applying Quasilinearization method (QLM) the system of NODE’s is simplified and changed into a system of Linear ordinary differential equations (LODE’s) and instead of working on a system of NODE’s, all processes and works are done on a system of LODE’s. Therefore, unlike the most of the current studies working on nonlinear algebraic equations, the problem is reduced to a system of linear algebraic equations. Then, to solve the problem and find the unknown approximation coefficients, a system of Ax=b has been solved. At the end, the accuracy and reliability of this method are shown and comparisons with the other current work’s results are made.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno