Ir al contenido

Documat


Neutral stochastic functional differential evolution equations driven by Rosenblatt process with varying-time delays

  • El Hassan, Lakhel [1]
    1. [1] Cadi Ayyad University

      Cadi Ayyad University

      Marrakech-Medina, Marruecos

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 38, Nº. 4, 2019, págs. 665-689
  • Idioma: inglés
  • DOI: 10.22199/issn.0717-6279-2019-04-0043
  • Enlaces
  • Resumen
    • Hermite processes are self-similar processes with stationary increments, the Hermite process of order 1 is fractional Brownian motion and the Hermite process of order 2 is the Rosenblatt process. In this paper we consider a class of time-dependent neutral stochastic functional differential equations with finite delay driven by Rosenblatt process with index H ∈ ( 1/2 , 1) which is a special case of a self-similar process with long-range dependence. More precisely, we prove the existence and uniqueness of mild solutions by using stochastic analysis and a fixed-point strategy. Finally, an illustrative example is provided to demonstrate the effectiveness of the theoretical result.

  • Referencias bibliográficas
    • P. Acquistapace and B. Terreni. “A unified approach to abstract linear parabolic equations”, Rendiconti del seminario matematico della Università...
    • D. Aoued and S. Baghli-Bendimerad, “Mild solutions for perturbed evolution equations with infinite state-dependent delay”, Electronic journal...
    • B. Boufoussi and S. Hajji, “Neutral stochastic functional differential equation driven by a fractional Brownian motion in a Hilbert space”,...
    • B. Boufoussi, S. Hajji, and E. Lakhel, “Functional differential equations in Hilbert spaces driven by a fractional Brownian motion”, Afrika...
    • G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions. Cambridge: Cambridge University Press, 1992. doi: 10.1017/CBO9780511666223.
    • E. Lakhel and S. Hajji. “Existence and uniqueness of mild solutions to neutral SFDEs driven by a fractional Brownian motion with nonLipschitz...
    • A. Boudaoui and E. Lakhel, “Controllability of Stochastic Impulsive Neutral Functional Differential Equations Driven by Fractional Brownian...
    • E. Lakhel and A. Tlidi, “Controllability of time-dependent neutral stochastic functional differential equations driven by a fractional Brownian...
    • B. Boufoussi, S. Hajji, and E. Lakhel, “Exponential stability of impulsive neutral stochastic functional differential equation driven by fractional...
    • E. Lakhel, “Controllability of neutral functional differential equations driven by fractional Brownian motion with infinite delay”, Nonlinear...
    • E. Lakhel and M. Mckibben, “Existence of solutions for fractional neutral functional differential equations driven by fBm with infinite delay”,...
    • N. Leonenko and V. Anh, “Rate of convergence to the Rosenblatt distribution for additive functionals of stochastic processes with long-range...
    • M. Maejima and C. Tudor, “On the distribution of the Rosenblatt process”, Statistics & probability letters, vol. 83, no. 6, pp. 1490–1495,...
    • M. Maejima and C. Tudor, “Wiener integrals with respect to the Hermite process and a non-central limit theorem”, Stochastic analysis and applications,...
    • A. Pazy, Semigroups of linear operators and applications to partial differential equations, vol. 44. New York, NY: Springer, 1983, doi: 10.1007/978-1-4612-5561-1.
    • V. Pipiras and M. Taqqu, “Integration questions related to fractional Brownian motion”, Probability theory and related fields, vol. 118, no....
    • Y. Ren and D. Sun, “Second-order neutral impulsive stochastic evolution equations with delay”, Journal of mathematical physics, vol. 50, no....
    • R. Sakthivel, P. Revathi, Y. Ren, and G. Shen, “Retarded stochastic differential equations with infinite delay driven by Rosenblatt process”,...
    • R. Rosenblatt, “Independence and dependence”, in Proceedings of the Fourth Berkeley symposium on mathematical statistics and probability,...
    • M. Taqqu, “Weak convergence to fractional brownian motion and to the Rosenblatt process”, Zeitschrift für wahrscheinlichkeitstheorie und verwandte...
    • M. Taqqu, “Convergence of integrated processes of arbitrary Hermite rank”, Zeitschrift für wahrscheinlichkeitstheorie und verwandte gebiete,...
    • C. Tudor, “Analysis of the Rosenblatt process”, ESAIM: Probability and statistics, vol. 12, pp. 230–257, Jan. 2008, doi: 10.1051/ps:2007037.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno