Ir al contenido

Documat


New bounds on the distance Laplacian and distance signless Laplacian spectral radii

  • Díaz, Roberto Carlos [1] ; Julio, Ana [1] ; Rojo, Óscar [1]
    1. [1] Universidad Católica del Norte

      Universidad Católica del Norte

      Antofagasta, Chile

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 38, Nº. 4, 2019, págs. 849-873
  • Idioma: inglés
  • DOI: 10.22199/issn.0717-6279-2019-04-0056
  • Enlaces
  • Resumen
    • Let G be a simple undirected connected graph. In this paper, new upper bounds on the distance Laplacian spectral radius of G are obtained. Moreover, new lower and upper bounds for the distance signless Laplacian spectral radius of G are derived. Some of the above mentioned bounds are sharp and the graphs attaining the corresponding bound are characterized. Several illustrative examples are included.

       

  • Referencias bibliográficas
    • M. Aouchiche and P. Hansen, “On a conjecture about the Szeged index”, European journal of combinatorics, vol. 31, no. 7 pp. 1662-1666, Oct....
    • M. Aouchiche and P. Hansen, “Two Laplacians for the distance matrix of a graph”, Linear algebra and its applications, vol. 439, no. 1, pp....
    • M. Aouchiche and P. Hansen, “Distance spectra of graphs: a survey”, Linear algebra and its applications, vol. 458, no. 1, pp. 301-386, Oct....
    • M. Aouchiche and P. Hansen, Some properties of the distance Laplacian eigenvalues of a graph, Czechoslovak mathematical journal ,vol. 64,...
    • M. Aouchiche and P. Hansen, “On the distance signless Laplacian of a graph”, Linear and multilinear algebra, vol. 64, no. 6, pp. 1113-1123,...
    • F. Boesch, “Properties of the distance matrix of a tree”, Quarterly of applied mathematics, vol. 26, no. 4, pp. 607-609, Jan. 1969, doi: 10.1090/qam/265210.
    • P. Buneman, “A note on metric properties of trees", Journal of combinatorial theory, series B, vol. 17, no. 1, pp. 48-50, Aug. 1974, doi:...
    • F. Bauer, E. Deutsch and J. Stoer, Abschatzungen fur eigenwerte positiver linearer operatoren, Linear algebra and its applications, vol. 2,...
    • A. Brauer, “Limits for the characteristic roots of a matrix IV: applications to stochastic matrices”, Duke mathematics journal, vol. 19, no....
    • S. Hakimi, S. Yau, “Distance matrix of a graph and its realizability”, Quarterly of applied mathematics, vol. 22, no. 4, pp. 305-317, 1964,...
    • R. Horn and C. Johnson, Matrix Analysis. Cambridge: Cambridge University Press, 1985, doi: 10.1017/CBO9780511810817.
    • W. Hong, L. You, “Some sharp bounds on the distance signless Laplacian spectral radius of graphs”, Aug, 2013. arXiv:1308.3427v1.
    • R. Graham, H. Pollak, “On the addressing problem for loop switching”, The Bell System Technical Journal, vol. 50, no. 8, pp. 2495-2519, Oct....
    • H. Lin, Y. Hong, J. Wang and J. Shu, “On the distance spectrum of graphs”, Linear algebra and its applications, vol. 439, no. 6, pp. 1662-1669,...
    • J. Li, Y. Pan, “Upper bounds for the Laplacian graph eigenvalues”, Acta mathematica sinica, vol. 20, no. 5, pp. 803-806, Sep. 2004, doi: 10.1007/s10114-004-0332-4.
    • H. Q. Liu, M. Lu, and F. Tian, “On the Laplacian spectral radius of a graph”, Linear algebra and its applications, vol. 376, pp. 135-141,...
    • O. Rojo and H. Rojo, “A decreasing sequence of upper bounds on the largest Laplacian eigenvalue of a graph”, Linear algebra and its applications,...
    • D. Stevanović and A. Ilić, "Spectral properties of distance matrix of graphs", in Distance in molecular graph theory, vol. 12. L....
    • I. Schoenberg, "Remarks to Maurice Frechet's article ‘Sur la definition axiomatique d'une classe d'espace distances vectoriellement...
    • J. Simões-Pereira, “An algorithm and its role in the sudy of optimal graph realizations of distance matrices”, Discrete mathematics, vol....
    • J. Simões-Pereira, “A note on distance matrices with unicyclic graph realizations”, Discrete mathematics, vol. 65, no. 3, pp. 277-287, Jul....
    • J. Simões-Pereira, “A note on a tree realizability of a distance matrix”, Journal of combinatorial theory, vol. 6, no. 3, pp. 303-310, Apr....
    • J. Simões-Pereira, “Some results on the tree realization of a distance matrix,” in Théorie des Graphes - Journées Internationales d'Étude,...
    • S. Varone, “Trees related realizations of distance matrices”, Discrete mathematics, vol. 192, no. 1-3, pp. 337-346, Oct. 1998, doi: 10.1016/S0012-365X(98)00081-8.
    • G. Yu, “On the least distance eigenvalue of a graph”, Linear algebra and its applications, vol. 439, no. 8, pp. 2428-2433, Oct. 2013, doi:...
    • G. Young and A. Householder, “Discussion of a set of points in terms of their mutul distances”, Psychomatika, vol. 3, no. 1, pp. 19-22, Mar....
    • L. You, Y. Shu, and X. Zhang, “A Sharp upper bound for the spectral radius of a nonnegative matrix and applications”, Jul. 2016, arXiv:1607.05883v1.
    • Z. Liu, “On spectral radius of the distance matrix”, Applicable analysis and discrete mathematics, vol. 4, no. 2, pp. 269-277, Oct. 201, doi:...
    • J. Xue, H. Lin, K. Das and J. Shu, “More results on the distance (signless) Laplacian eigenvalues of graphs”, May 2017, arXiv:1705.07419v1.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno